Strategies for increasing the efficiency of a genetic algorithm for the structural optimization of nanoalloy clusters

An improved genetic algorithm (GA) is described that has been developed to increase the efficiency of finding the global minimum energy isomers for nanoalloy clusters. The GA is optimized for the example Pt12Pd12, with specific investigation of: the effect of biasing the initial population by seeding; the effect of removing specified clusters from the population (“predation”); and the effect of varying the type of mutation operator applied. These changes are found to significantly enhance the efficiency of the GA, which is subsequently demonstrated by the application of the best strategy to a new cluster, namely Pt19Pd19. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 1069–1078, 2005

[1]  Rajendra Prasad,et al.  Atomic and Molecular Clusters , 2005 .

[2]  Rosato,et al.  Tight-binding potentials for transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[3]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[4]  R. Johnston,et al.  Empirical Potentials for Modeling Solids, Surfaces, and Clusters , 1999 .

[5]  R. Johnston Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries , 2003 .

[6]  Roy L. Johnston,et al.  Geometries and segregation properties of platinum–palladium nanoalloy clusters , 2002 .

[7]  R. Johnston,et al.  A genetic algorithm for the structural optimization of Morse clusters , 2000 .

[8]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[9]  Bernd Hartke,et al.  Size-dependent transition from all-surface to interior-molecule structures in pure neutral water clusters , 2003 .

[10]  Riccardo Ferrando,et al.  Growth simulations of silver shells on copper and palladium nanoclusters , 2002 .

[11]  Said Salhi,et al.  Theoretical investigation of isomer stability in platinum–palladium nanoalloy clusters , 2004 .

[12]  Bernd Hartke,et al.  Structures of mercury clusters in a quantum–empirical hybrid model , 2001 .

[13]  Bernd Hartke,et al.  Global geometry optimization of clusters guided by N-dependent model potentials , 1996 .

[14]  Julius Jellinek,et al.  Theory of Atomic and Molecular Clusters , 1999 .

[15]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[16]  Roy L. Johnston,et al.  Applications of Evolutionary Computation in Chemistry , 2004 .

[17]  Julius Jellinek,et al.  Alloy Clusters: Structural Classes, Mixing, and Phase Changes , 1999 .

[18]  K. Ho,et al.  Structural optimization of Lennard-Jones clusters by a genetic algorithm , 1996 .

[19]  Yong L. Xiao,et al.  Genetic algorithm: a new approach to the prediction of the structure of molecular clusters , 1993 .

[20]  Saïd Salhi,et al.  Development of a Genetic Algorithm for Optimization of Nanoalloys , 2004, GECCO.

[21]  Roy L. Johnston,et al.  Investigation of geometric shell aluminum clusters using the Gupta many-body potential , 2000 .

[22]  Eberhard R. Hilf,et al.  Theory of Atomic and Molecular Clusters , 1994 .

[23]  Zeiri Prediction of the lowest energy structure of clusters using a genetic algorithm. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  B. Hartke Global geometry optimization of clusters using genetic algorithms , 1993 .

[25]  Andrei V. Ruban,et al.  Surface segregation energies in transition-metal alloys , 1999 .

[26]  Mark P. Andrews,et al.  Gas-phase "molecular alloys" of bulk immiscible elements: iron-silver (FexAgy) , 1992 .

[27]  Paul R. Raithby,et al.  Metal clusters in chemistry , 1999 .

[28]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[29]  S. Haukka,et al.  Alloying in Cu/Pd Nanoparticle Catalysts , 1998 .