The Many-Faced Plot: Strategy for Automatic Glyph Generation

Despite some authors stating that data-relatedness helps interpretation, glyphs are often used unrelated to the represented data. In order to automatically produce data-related glyphs, a large visual repository is required, as well as, image structure suitable for data representation. In this paper, we propose a strategy that fulfills the two requirements and allows the production of glyphs related to the data thematic (literal and metaphorical). We compare used approach with current glyph techniques and discuss the results

[1]  Catherine Havasi,et al.  Representing General Relational Knowledge in ConceptNet 5 , 2012, LREC.

[2]  Geert De Soete A Perceptual Study of the Flury-Riedwyl Faces for Graphically Displaying Multivariate Data , 1986, Int. J. Man Mach. Stud..

[3]  Isabelle Augenstein,et al.  emoji2vec: Learning Emoji Representations from their Description , 2016, SocialNLP@EMNLP.

[4]  Kang Zhang,et al.  Metaphoric Transfer Effect in Information Visualization Using Glyphs , 2015, VINCI.

[5]  Harri Siirtola,et al.  The effect of data-relatedness in interactive glyphs , 2005, Ninth International Conference on Information Visualisation (IV'05).

[6]  Elisabeth S. Nelson,et al.  Visual Search Processes and the Multivariate Point Symbol , 1997 .

[7]  Yves D. Jean,et al.  Dataspace: an automated visualization system for large databases , 1997, Electronic Imaging.

[8]  H. P. Friedman,et al.  The surgical implications of physiologic patterns in myocardial infarction shock. , 1972, Surgery.

[9]  Mark Bailey,et al.  The Grammar of Graphics , 2007, Technometrics.

[10]  Huamin Qu,et al.  Visualizing the Semantic Structure in Classical Music Works , 2010, IEEE Transactions on Visualization and Computer Graphics.

[11]  Lucy T. Nowell,et al.  ThemeRiver: Visualizing Thematic Changes in Large Document Collections , 2002, IEEE Trans. Vis. Comput. Graph..

[12]  Matthew O. Ward,et al.  Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[13]  Min Chen,et al.  Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications , 2013, Eurographics.

[14]  Michael Chau,et al.  Visualizing web search results using glyphs: Design and evaluation of a flower metaphor , 2011, TMIS.

[15]  R. L. Brown,et al.  Methods for the graphic representation of systems simulated data , 1985 .

[16]  Tobias Schreck,et al.  Leaf Glyph - Visualizing Multi-dimensional Data with Environmental Cues , 2015, IVAPP.

[17]  H. Surtola,et al.  The effect of data-relatedness in interactive glyphs , 2005, Ninth International Conference on Information Visualisation (IV'05).

[18]  Penousal Machado,et al.  A Pig, an Angel and a Cactus Walk Into a Blender: A Descriptive Approach to Visual Blending , 2017, ICCC.

[19]  Tetsuya Iizuka,et al.  Automatic Visualization Method for Visual Data Mining , 1998, PAKDD.

[20]  E. Anderson A Semigraphical Method for the Analysis of Complex Problems , 1960 .

[21]  Anastasia Bezerianos,et al.  A Systematic Review of Experimental Studies on Data Glyphs , 2017, IEEE Transactions on Visualization and Computer Graphics.

[22]  Pat Hanrahan,et al.  Show Me: Automatic Presentation for Visual Analysis , 2007, IEEE Transactions on Visualization and Computer Graphics.

[23]  Stephen M. Casner,et al.  Task-analytic approach to the automated design of graphic presentations , 1991, TOGS.

[24]  Dean M. Young,et al.  COMPARISONS OF SEVERAL GRAPHICAL METHODS FOR REPRESENTING MULTIVARIATE DATA , 1987 .

[25]  Herman Chernoff,et al.  The Use of Faces to Represent Points in k- Dimensional Space Graphically , 1973 .

[26]  Elizabeth J. Casey Visual Display Representation of Multidimensional Systems: The Effect of System Structure: And Display Integrality , 1987 .

[27]  Michael D. Lee,et al.  An Empirical Evaluation of Chernoff Faces, Star Glyphs, and Spatial Visualisations for Binary Data , 2003, InVis.au.

[28]  H. Riedwyl,et al.  Graphical Representation of Multivariate Data by Means of Asymmetrical Faces , 1981 .

[29]  Amit P. Sheth,et al.  EmojiNet: Building a Machine Readable Sense Inventory for Emoji , 2016, SocInfo.

[30]  Matthew O. Ward,et al.  Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering , 2004, IEEE Symposium on Information Visualization.

[31]  Amit P. Sheth,et al.  EmojiNet: An Open Service and API for Emoji Sense Discovery , 2017, ICWSM.

[32]  Alex T. Pang,et al.  Glyphs for Visualizing Uncertainty in Vector Fields , 1996, IEEE Trans. Vis. Comput. Graph..

[33]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[34]  Penousal Machado,et al.  How Shell and Horn make a Unicorn: Experimenting with Visual Blending in Emoji , 2018, ICCC.

[35]  D. Gentner Structure‐Mapping: A Theoretical Framework for Analogy* , 1983 .

[36]  Bin Zhu Information visualization for knowledge repositories: Applications and impacts , 2002 .

[37]  John S. Risch On the role of metaphor in information visualization , 2008, ArXiv.

[38]  Leland Wilkinson,et al.  AutoVis: Automatic Visualization , 2010, Inf. Vis..

[39]  Paul Slovic,et al.  Graphic Representation of Judgmental Information , 1987 .