Graphs, quadratic forms, and quantum codes

We show that any stabilizer code over a finite field is equivalent to a graphical quantum code. Furthermore we prove that a graphical quantum code over a finite field is a stabilizer code. The technique used in the proof establishes a new connection between quantum codes and quadratic forms.

[1]  Dirk Schlingemann Stabilizer codes can be realized as graph codes , 2002, Quantum Inf. Comput..

[2]  Andreas Klappenecker,et al.  Beyond stabilizer codes I: Nice error bases , 2002, IEEE Trans. Inf. Theory.

[3]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[4]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[5]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[6]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[7]  Dirk Schlingemann,et al.  Quantum error-correcting codes associated with graphs , 2000, ArXiv.

[8]  Markus Grassl Algorithmic aspects of quantum error-correcting codes , 2002 .

[9]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.