The Theory of Linear Prediction

Linear prediction theory has had a profound impact in the field of digital signal processing. Although the theory dates back to the early 1940s, its influence can still be seen in applications today. The theory is based on very elegant mathematics and leads to many beautiful insights into statistical signal processing. Although prediction is only a part of the more general topics of linear estimation, filtering, and smoothing, this book focuses on linear prediction. This has enabled detailed discussion of a number of issues that are normally not found in texts. For example, the theory of vector linear prediction is explained in considerable detail and so is the theory of line spectral processes. This focus and its small size make the book different from many excellent texts which cover the topic, including a few that are actually dedicated to linear prediction. There are several examples and computer-based demonstrations of the theory. Applications are mentioned wherever appropriate, ut the focus is not on the detailed development of these applications. The writing style is meant to be suitable for self-study as well as for classroom use at the senior and first-year graduate levels. The text is self-contained for readers with introductory exposure to signal processing, random processes, and the theory of matrices, and a historical perspective and detailed outline are given in the first chapter. Table of Contents: Introduction / The Optimal Linear Prediction Problem / Levinson's Recursion / Lattice Structures for Linear Prediction / Autoregressive Modeling / Prediction Error Bound and Spectral Flatness / Line Spectral Processes / Linear Prediction Theory for Vector Processes / Appendix A: Linear Estimation of Random Variables / B: Proof of a Property of Autocorrelations / C: Stability of the Inverse Filter / Recursion Satisfied by AR Autocorrelations

[1]  Monson H. Hayes,et al.  Statistical Digital Signal Processing and Modeling , 1996 .

[2]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[3]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[4]  P. P. Vaidyanathan,et al.  Passive cascaded-lattice structures for low-sensitivity FIR filter design, with applications to filter banks , 1986 .

[5]  S. Chandrasekhar On the Radiative Equilibrium of a Stellar Atmosphere. XXI. , 1947 .

[6]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[7]  John H. L. Hansen,et al.  Discrete-Time Processing of Speech Signals , 1993 .

[8]  P.P. Vaidyanathan,et al.  On the minimum phase property of prediction-error polynomials , 1997, IEEE Signal Processing Letters.

[9]  P. Peebles Probability, Random Variables and Random Signal Principles , 1993 .

[10]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[11]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[12]  Rama Chellappa,et al.  Texture synthesis using 2-D noncausal autoregressive models , 1985, IEEE Trans. Acoust. Speech Signal Process..

[13]  F. Itakura Line spectrum representation of linear predictor coefficients of speech signals , 1975 .

[14]  Robert Bregovic,et al.  Multirate Systems and Filter Banks , 2002 .

[15]  Biing-Hwang Juang,et al.  Optimal quantization of LSP parameters , 1993, IEEE Trans. Speech Audio Process..

[16]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[17]  Sanjit K. Mitra,et al.  A new approach to the realization of low-sensitivity IIR digital filters , 1986, IEEE Trans. Acoust. Speech Signal Process..

[18]  Allan O. Steinhardt,et al.  Fast algorithms for digital signal processing , 1986, Proceedings of the IEEE.

[19]  Gian Antonio Mian,et al.  A note on line spectral frequencies [speech coding] , 1988, IEEE Trans. Acoust. Speech Signal Process..

[20]  P.P. Vaidyanathan,et al.  Low passband sensitivity digital filters: A generalized viewpoint and synthesis procedures , 1984, Proceedings of the IEEE.

[21]  R. Kumaresan,et al.  Estimating the Angles of Arrival of Multiple Plane Waves , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[22]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[23]  Soura Dasgupta,et al.  Blind channel equalization with colored sources based on second-order statistics: a linear prediction approach , 2001, IEEE Trans. Signal Process..

[24]  E. Robinson,et al.  A historical perspective of spectrum estimation , 1982, Proceedings of the IEEE.

[25]  Harry L. Van Trees,et al.  Optimum Array Processing , 2002 .

[26]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[27]  Paulo Sergio Ramirez,et al.  Fundamentals of Adaptive Filtering , 2002 .

[28]  L. Fransen,et al.  Application of line-spectrum pairs to low-bit-rate speech encoders , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[29]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[30]  Philippe Loubaton,et al.  Blind identification of MIMO-FIR systems: A generalized linear prediction approach , 1999, Signal Process..

[31]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[32]  Bishnu S. Atal,et al.  Predictive coding of speech signals and subjective error criteria , 1978, ICASSP.

[33]  M.G. Bellanger,et al.  Digital processing of speech signals , 1980, Proceedings of the IEEE.

[34]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[35]  Barry Simon Szegő’s theorem , 2005 .

[36]  E. Chong,et al.  Introduction to optimization , 1987 .

[37]  A. Gray,et al.  Digital lattice and ladder filter synthesis , 1973 .

[38]  S. T. Alexander,et al.  Channel Equalization Using Adaptive Lattice Algorithms , 1979, IEEE Trans. Commun..

[39]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[40]  K. H. Barratt Digital Coding of Waveforms , 1985 .

[41]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[42]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[43]  J. Makhoul,et al.  Vector quantization in speech coding , 1985, Proceedings of the IEEE.

[44]  P.P. Vaidyanathan,et al.  On predicting a band-limited signal based on past sample values , 1987, Proceedings of the IEEE.

[45]  T. Moon,et al.  Mathematical Methods and Algorithms for Signal Processing , 1999 .

[46]  M. R. Schroeder,et al.  Adaptive predictive coding of speech signals , 1970, Bell Syst. Tech. J..

[47]  Manfred R. Schroeder,et al.  Computer Speech: Recognition, Compression, Synthesis , 1999 .

[48]  A. Gray,et al.  A normalized digital filter structure , 1975 .

[49]  Richard E. Blahut,et al.  Fast Algorithms for Digital Signal Processing , 1985 .

[50]  V. Kroupa,et al.  Digital spectral analysis , 1983, Proceedings of the IEEE.

[51]  Dimitris G. Manolakis,et al.  Statistical and Adaptive Signal Processing , 2000 .

[52]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[53]  Thomas Kailath,et al.  Displacement ranks of a matrix , 1979 .

[54]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[55]  Albert A. Mullin,et al.  Extraction of signals from noise , 1970 .

[56]  Biing-Hwang Juang,et al.  Line spectrum pair (LSP) and speech data compression , 1984, ICASSP.

[57]  T.H. Crystal,et al.  Linear prediction of speech , 1977, Proceedings of the IEEE.

[58]  F. Itakura,et al.  A statistical method for estimation of speech spectral density and formant frequencies , 1970 .

[59]  B. Friedlander A lattice algorithm for factoring the spectrum of a moving average process , 1983 .

[60]  N. Wiener,et al.  The prediction theory of multivariate stochastic processes , 1957 .

[61]  Thomas Kailath,et al.  A view of three decades of linear filtering theory , 1974, IEEE Trans. Inf. Theory.

[62]  K. C Ng,et al.  Electrical network theory , 1977 .

[63]  E. Kreyszig,et al.  Advanced Engineering Mathematics. , 1974 .

[64]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[65]  P. Vaidyanathan The discrete-time bounded-real lemma in digital filtering , 1985 .

[66]  Charles W. Therrien,et al.  Discrete Random Signals and Statistical Signal Processing , 1992 .

[67]  J. Makhoul Stable and efficient lattice methods for linear prediction , 1977 .

[68]  Subrahmanyan Chandrasekhar,et al.  On the radiative equilibrium of a stellar atmosphere , 1944 .

[69]  Andreas Antoniou,et al.  Practical Optimization: Algorithms and Engineering Applications , 2007, Texts in Computer Science.

[70]  A. Antoniou Digital Signal Processing: Signals, Systems, and Filters , 2005 .

[71]  T. Kailath,et al.  A subspace rotation approach to signal parameter estimation , 1986, Proceedings of the IEEE.

[72]  J. Burg THE RELATIONSHIP BETWEEN MAXIMUM ENTROPY SPECTRA AND MAXIMUM LIKELIHOOD SPECTRA , 1972 .

[73]  R. V. Churchill Introduction to complex variables and applications , 1948 .

[74]  J. L. Hock,et al.  An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .

[75]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[76]  J.H. McClellan,et al.  A simple proof of stability for all-pole linear prediction models , 1979, Proceedings of the IEEE.

[77]  Sanjit K. Mitra,et al.  A general family of multivariable digital lattice filters , 1985 .

[78]  Peter No,et al.  Digital Coding of Waveforms , 1986 .

[79]  A. N. Kolmogorov,et al.  Interpolation and extrapolation of stationary random sequences. , 1962 .

[80]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[81]  Augustine H. Gray,et al.  Passive cascaded lattice digital filters , 1979, ICASSP.

[82]  A. Papoulis Maximum entropy and spectral estimation: A review , 1981 .

[83]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[84]  Robert M. Gray,et al.  On the asymptotic eigenvalue distribution of Toeplitz matrices , 1972, IEEE Trans. Inf. Theory.