A least-squares minimum-cost network flow algorithm

Node-arc incidence matrices in network flow problems exhibit several special least-squares properties. We show how these properties can be leveraged in a least-squares primal-dual algorithm for solving minimum-cost network flow problems quickly. Computational results show that the performance of an upper-bounded version of the least-squares minimum-cost network flow algorithm with a special dual update operation is comparable to CPLEX Network and Dual Optimizers for solving a wide range of minimum-cost network flow problems.

[1]  Daniel Bienstock,et al.  Potential Function Methods for Approximately Solving Linear Programming Problems: Theory and Practice , 2002 .

[2]  I-Lin Wang,et al.  Shortest paths and multicommodity network flows , 2003 .

[3]  D. Bertsekas,et al.  The relax codes for linear minimum cost network flow problems , 1988 .

[4]  Mauricio G. C. Resende,et al.  Fortran subroutines for network flow optimization using an interior point algorithm , 2008 .

[5]  K. G. Ramakrishnan,et al.  An Approximate Dual Projective Algorithm for Solving Assignment Problems , 1991, Network Flows And Matching.

[6]  G. B. Dantzig,et al.  A strictly improving linear programming Phase I algorithm , 1993, Ann. Oper. Res..

[7]  Michael Kharitonov,et al.  On implementing scaling push-relabel algorithms for the minimum-relabel algorithms for the minimum-cost flow problem , 1993 .

[8]  Joaquim Júdice,et al.  A truncated primal-infeasible dual-feasible network interior point method , 2000, Networks.

[9]  Angelo Sifaleras,et al.  An exterior simplex type algorithm for the Minimum Cost Network Flow Problem , 2009, Comput. Oper. Res..

[10]  Paul Tseng,et al.  Relaxation Methods for Minimum Cost Ordinary and Generalized Network Flow Problems , 1988, Oper. Res..

[11]  James B. Orlin,et al.  A faster strongly polynomial minimum cost flow algorithm , 1993, STOC '88.

[12]  Warren B. Powell,et al.  A Review of Sensitivity Results for Linear Networks and a New Approximation to Reduce the Effects of Degeneracy , 1989, Transp. Sci..

[13]  V. Srinivasan,et al.  Determining All Nondegenerate Shadow Prices for the Transportation Problem , 1977 .

[14]  Éva Tardos,et al.  A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..

[15]  R. V. Helgason,et al.  Algorithms for network programming , 1980 .

[16]  Victoria Chen,et al.  A least-squares primal-dual algorithm for solving linear programming problems , 2002, Oper. Res. Lett..

[17]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[18]  K. Paparrizos,et al.  On the Computational Behavior of a Dual Network Exterior Point Simplex Algorithm for the Minimum Cost Network Flow Problem , 2009 .

[19]  Darwin Klingman,et al.  NETGEN: A Program for Generating Large Scale Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems , 1974 .

[20]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[21]  V G Andrew,et al.  AN EFFICIENT IMPLEMENTATION OF A SCALING MINIMUM-COST FLOW ALGORITHM , 1997 .

[22]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[23]  James B. Orlin,et al.  A polynomial time primal network simplex algorithm for minimum cost flows , 1996, SODA '96.

[24]  L. Portugal,et al.  A truncated primal‐infeasible dual‐feasible network interior point method , 2000 .

[25]  Angelika Steger,et al.  Fast Algorithms for Weighted Bipartite Matching , 2005, WEA.

[26]  Dimitri P. Bertsekas,et al.  RELAX-IV : a faster version of the RELAX code for solving minimum cost flow problems , 1994 .

[27]  Cristian S. Calude,et al.  Discrete Mathematics and Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[28]  Éva Tardos,et al.  A strongly polynomial minimum cost circulation algorithm , 1985, Comb..

[29]  Kevin D. Wayne A Polynomial Combinatorial Algorithm for Generalized Minimum Cost Flow , 2002, Math. Oper. Res..

[30]  Antonio Frangioni,et al.  A Computational Study of Cost Reoptimization for Min-Cost Flow Problems , 2006, INFORMS J. Comput..

[31]  Andrew V. Goldberg,et al.  On Implementing Scaling Push-Relabel Algorithms for the Minimum-Cost Flow Problem , 1991, Network Flows And Matching.

[32]  W. H. Cunningham,et al.  Theoretical Properties of the Network Simplex Method , 1979, Math. Oper. Res..

[33]  Seunghyun Kong,et al.  Linear Programming Algorithms Using Least-Squares Method , 2007 .

[34]  Michael Florian,et al.  AN EFFICIENT IMPLEMENTATION OF THE NETWORK SIMPLEX METHOD. , 1997 .