Aerogravity assist maneuvering of a tethered satellite system

Two new implementations of a tethered satellite system to provide aeroassist during a planetary flyby are investigated. In each mission scenario the interaction of the Martian atmosphere with an aerodynamic lifting surface, which is tethered to an orbiter, is used to perturb the flight path of the system. The aerodynamic forces generated by interacting with the atmosphere augment the gravity assist provided by the planet. In the first aerogravity-assist maneuver the tethered satellite system has congruent post- and preflyby configurations. The second scenario, which is referred to as a dual-destination mission, involves the system mass being separated during the flyby. Both of these aerogravity-assist maneuvers are shown to facilitate significant, propellant-free velocity changes.

[1]  Fayyaz A. Lohar,et al.  Mars-Jupiter Aerogravity Assist Trajectories for High-Energy Missions , 1997 .

[2]  Mehdi Keshmiri,et al.  General formulation for N-body tethered satellite system dynamics , 1996 .

[3]  Jordi Puig-Suari,et al.  Aerobraking tethers for the exploration of the solar system , 1995 .

[4]  Hironori A. Fujii,et al.  Deployment/retrieval control of a tethered subsatellite under effect of tether elasticity , 1996 .

[5]  Peter M. Bainum,et al.  Shuttle-tethered subsatellite system stability with a flexible massive tether , 1985 .

[6]  J. Anderson,et al.  Hypersonic and High-Temperature Gas Dynamics , 2019 .

[7]  Mark J. Lewis,et al.  Hypersonic Airplane Space Tether Orbital Launch (HASTOL) system - Interim study results , 1999 .

[8]  Fayyaz A. Lohar,et al.  Optimal atmospheric trajectory for aerogravity assist with heat constraint , 1995 .

[9]  James E. Randolph,et al.  Hypersonic Maneuvering for Augmenting Planetary Gravity Assist , 1992 .

[10]  Monica Pasca,et al.  Collection of Martian Atmospheric Dust with a Low Altitude Tethered Probe , 1991 .

[11]  J. Longuski,et al.  Aerogravity-Assist Trajectories to the Outer Planets and the Effect of Drag , 2000 .

[12]  Jordi Puig-Suari,et al.  Three-Dimensional Hinged-Rod Model for Elastic Aerobraking Tethers , 1998 .

[13]  Srinivas R. Vadali,et al.  Modeling issues related to retrieval of flexible tethered satellite systems , 1995 .

[14]  John V. Breakwell,et al.  Pumping a tethered configuration to boost its orbit around an oblate planet , 1986 .

[15]  Srinivas R. Vadali,et al.  Nonlinear feedback deployment and retrieval of tethered satellite systems , 1992 .

[16]  James E. Randolph,et al.  Solar system 'fast mission' trajectories using aerogravity assist , 1992 .

[17]  T. W. Warnock,et al.  Predicting the orbital lifetime of tethered satellite systems , 1995 .

[18]  Brian Lee Biswell Active control of an atmospheric tether using a lifting probe , 1998 .

[19]  J. E. Cochran,et al.  Dynamics and Control of a Tethered Flight Vehicle , 1992 .

[20]  Jordi Puig-Suari,et al.  Stability and Control of an Atmospheric Tether with a Lifting Probe , 1999 .

[21]  E. J. van der Heide,et al.  Options for coordinated multi-point sensing in the lower thermosphere , 2001 .