Exploring Airline Gate-Scheduling Optimization Using Quantum Computers

This paper investigates the application of quantum computing technology to airline gate-scheduling quadratic assignment problems (QAP). We explore the quantum computing hardware architecture and software environment required for porting classical versions of these type of problems to quantum computers. We discuss the variational quantum eigensolver and the inclusion of space-efficient graph coloring to the Quadratic Unconstrained Binary Optimization (QUBO). These enhanced quantum computing algorithms are tested with an 8 gate and 24 flight test case using both the IBM quantum computing simulator and a 27 qubit superconducting transmon IBM quantum computing hardware platform.

[1]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[2]  Abdel Nasser,et al.  A Survey of the Quadratic Assignment Problem , 2014 .

[3]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[4]  Fred W. Glover,et al.  The unconstrained binary quadratic programming problem: a survey , 2014, Journal of Combinatorial Optimization.

[5]  M. Serrao,et al.  Quantum Computer Architecture: Towards Full-Stack Quantum Accelerators , 2019, 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[6]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[7]  Gian Giacomo Guerreschi,et al.  QAOA for Max-Cut requires hundreds of qubits for quantum speed-up , 2018, Scientific Reports.

[8]  Qingfeng Wang,et al.  An Introduction to Quantum Optimization Approximation Algorithm , 2018 .

[9]  J. Spall A Stochastic Approximation Technique for Generating Maximum Likelihood Parameter Estimates , 1987, 1987 American Control Conference.

[10]  Sorin Istrail,et al.  Statistical mechanics, three-dimensionality and NP-completeness: I. Universality of intracatability for the partition function of the Ising model across non-planar surfaces (extended abstract) , 2000, STOC '00.

[11]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[12]  Tobias Stollenwerk,et al.  Flight Gate Assignment with a Quantum Annealer , 2018, QTOP@NetSys.

[13]  John-Paul Clarke,et al.  Airport Gate Scheduling for Passengers, Aircraft, and Operation , 2013, ArXiv.

[14]  Lúcia Maria de A. Drummond,et al.  A Graphics Processing Unit Algorithm to Solve the Quadratic Assignment Problem Using Level-2 Reformulation-Linearization Technique , 2017, INFORMS J. Comput..

[15]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[16]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[17]  Adam Glos,et al.  Quantum Optimization for the Graph Coloring Problem with Space-Efficient Embedding , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[18]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[19]  S. Brierley,et al.  Accelerated Variational Quantum Eigensolver. , 2018, Physical review letters.

[20]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[21]  Fred W. Glover,et al.  A Tutorial on Formulating QUBO Models , 2018, ArXiv.

[22]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[23]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[24]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[25]  Idris Ismail,et al.  Combinatorial Optimization: Comparison of Heuristic Algorithms in Travelling Salesman Problem , 2017, Archives of Computational Methods in Engineering.

[26]  Thiago Serra,et al.  Template-based Minor Embedding for Adiabatic Quantum Optimization , 2019, INFORMS J. Comput..

[27]  P. Festa A brief introduction to exact, approximation, and heuristic algorithms for solving hard combinatorial optimization problems , 2014, 2014 16th International Conference on Transparent Optical Networks (ICTON).

[28]  Adam Glos,et al.  Space-efficient binary optimization for variational computing , 2020, 2009.07309.

[29]  Catherine C. McGeoch Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice , 2014, Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice.