Ethical issues in research and development of nanoparticles

[1]  Gabriela F Silva,et al.  Nanopharmaceutics: Part I—Clinical Trials Legislation and Good Manufacturing Practices (GMP) of Nanotherapeutics in the EU , 2020, Pharmaceutics.

[2]  A. Silva,et al.  Metal-Based Nanoparticles as Antimicrobial Agents: An Overview , 2020, Nanomaterials.

[3]  S. Souto,et al.  New Nanotechnologies for the Treatment and Repair of Skin Burns Infections , 2020, International journal of molecular sciences.

[4]  Alessandra Durazzo,et al.  Transferrin-Conjugated Docetaxel–PLGA Nanoparticles for Tumor Targeting: Influence on MCF-7 Cell Cycle , 2019, Polymers.

[5]  Tiago Coutinho,et al.  Soft Cationic Nanoparticles for Drug Delivery: Production and Cytotoxicity of Solid Lipid Nanoparticles (SLNs) , 2019, Applied Sciences.

[6]  E. Tambourgi,et al.  Effect of Polysaccharide Sources on the Physicochemical Properties of Bromelain–Chitosan Nanoparticles , 2019, Polymers.

[7]  A. Silva,et al.  Comparison of antiproliferative effect of epigallocatechin gallate when loaded into cationic solid lipid nanoparticles against different cell lines , 2019, Pharmaceutical development and technology.

[8]  M. Gremião,et al.  The Influence of Polysaccharide Coating on the Physicochemical Parameters and Cytotoxicity of Silica Nanoparticles for Hydrophilic Biomolecules Delivery , 2019, Nanomaterials.

[9]  A. Silva,et al.  In Vitro Cytotoxicity of Oleanolic/Ursolic Acids-Loaded in PLGA Nanoparticles in Different Cell Lines , 2019, Pharmaceutics.

[10]  Michael Sun,et al.  Vascular Nanomedicine: Current Status, Opportunities, and Challenges , 2019, Seminars in Thrombosis and Hemostasis.

[11]  A. Camins,et al.  Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer's disease mice model , 2019, Journal of controlled release : official journal of the Controlled Release Society.

[12]  J. Vicente,et al.  Clinical Trials of Thermosensitive Nanomaterials: An Overview , 2019, Nanomaterials.

[13]  A. Silva,et al.  Surface‐tailored anti‐HER2/neu‐solid lipid nanoparticles for site‐specific targeting MCF‐7 and BT‐474 breast cancer cells , 2019, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[14]  E. Novellino,et al.  Abelmoschus esculentus (L.): Bioactive Components’ Beneficial Properties—Focused on Antidiabetic Role—For Sustainable Health Applications , 2018, Molecules.

[15]  A. Silva,et al.  Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: in vitro and in vivo characterization , 2018, Journal of Nanobiotechnology.

[16]  Yue-Wern Huang,et al.  The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms , 2017, International journal of molecular sciences.

[17]  E. Souto,et al.  Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. , 2017, Progress in lipid research.

[18]  Reinout Heijungs,et al.  Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterials. , 2017, Nature nanotechnology.

[19]  Yubin Cao,et al.  Toxicity assessment of nanoparticles in various systems and organs , 2017 .

[20]  Yanji Jiang,et al.  Transport of natural soil nanoparticles in saturated porous media: effects of pH and ionic strength , 2017 .

[21]  C. Berndt,et al.  Nanolaminated composite materials: structure, interface role and applications , 2016 .

[22]  S. Doktorovová,et al.  Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. , 2016, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[23]  A. Silva,et al.  In vitro, ex vivo and in vivo characterization of PLGA nanoparticles loading pranoprofen for ocular administration. , 2016, International journal of pharmaceutics.

[24]  A. Silva,et al.  PEGylated PLGA nanospheres optimized by design of experiments for ocular administration of dexibuprofen-in vitro, ex vivo and in vivo characterization. , 2016, Colloids and surfaces. B, Biointerfaces.

[25]  Barbara Karn,et al.  A framework of criteria for the sustainability assessment of nanoproducts , 2016 .

[26]  E. Souto,et al.  Biopharmaceutical profile of hydrogels containing pranoprofen-loaded PLGA nanoparticles for skin administration: In vitro, ex vivo and in vivo characterization. , 2016, International journal of pharmaceutics.

[27]  E. Souto,et al.  Design and characterization of chitosan/zeolite composite films--Effect of zeolite type and zeolite dose on the film properties. , 2016, Materials science & engineering. C, Materials for biological applications.

[28]  J. Qiu Nanotechnology development in China: challenges and opportunities , 2016 .

[29]  Mohammad Abdollahi,et al.  Toxicity of Nanoparticles and an Overview of Current Experimental Models , 2016, Iranian biomedical journal.

[30]  F. Lang,et al.  The fate of silver nanoparticles in soil solution--Sorption of solutes and aggregation. , 2015, The Science of the total environment.

[31]  B. Arda,et al.  NANOTECHNOLOGY, NANOMEDICINE; ETHICAL ASPECTS. , 2015, Revista romana de bioetica.

[32]  Z. Zdrojewicz,et al.  Medical applications of nanotechnology. , 2015, Postepy higieny i medycyny doswiadczalnej.

[33]  H. Bouwmeester,et al.  Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. , 2015, Regulatory toxicology and pharmacology : RTP.

[34]  A. Silva,et al.  Effect of mucoadhesive polymers on the in vitro performance of insulin-loaded silica nanoparticles: Interactions with mucin and biomembrane models. , 2015, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[35]  M. H. Santana,et al.  Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies. , 2015, Colloids and surfaces. B, Biointerfaces.

[36]  Dongsheng Liu,et al.  Spatial regulation of synthetic and biological nanoparticles by DNA nanotechnology , 2015 .

[37]  Ilka Gehrke,et al.  Innovations in nanotechnology for water treatment , 2015, Nanotechnology, science and applications.

[38]  M. Gremião,et al.  Surface engineering of silica nanoparticles for oral insulin delivery: characterization and cell toxicity studies. , 2014, Colloids and surfaces. B, Biointerfaces.

[39]  E. Souto,et al.  Surface modified PLGA nanoparticles for brain targeting of Bacoside-A. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[40]  Ivo Iavicoli,et al.  Opportunities and challenges of nanotechnology in the green economy , 2014, Environmental Health.

[41]  A. Silva,et al.  Cationic solid lipid nanoparticles interfere with the activity of antioxidant enzymes in hepatocellular carcinoma cells. , 2014, International journal of pharmaceutics.

[42]  Y. Schneider,et al.  Engineered Nanomaterials in Food: Implications for Food Safety and Consumer Health , 2014, International journal of environmental research and public health.

[43]  A. Silva,et al.  Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers - a systematic review of in vitro data. , 2014, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[44]  P. Boissy,et al.  Framework for the Analysis of Nanotechnologies’ Impacts and Ethical Acceptability: Basis of an Interdisciplinary Approach to Assessing Novel Technologies , 2014, Sci. Eng. Ethics.

[45]  João Paulo Teixeira,et al.  Comet assay reveals no genotoxicity risk of cationic solid lipid nanoparticles , 2014, Journal of applied toxicology : JAT.

[46]  Hongtao Yu,et al.  Mechanisms of nanotoxicity: Generation of reactive oxygen species , 2014, Journal of food and drug analysis.

[47]  M. Momenpour,et al.  Effects of Nanoparticles on the Environment and Outdoor Workplaces , 2013, Electronic physician.

[48]  Susan E. Cozzens,et al.  Nanotechnology and the millennium development goals: water, energy, and agri-food , 2013, Journal of Nanoparticle Research.

[49]  Huifeng Qian,et al.  Gold nanoparticles for cleaning contaminated water , 2013 .

[50]  M. H. Santana,et al.  Hydrophilic coating of mitotane-loaded lipid nanoparticles: Preliminary studies for mucosal adhesion , 2013, Pharmaceutical development and technology.

[51]  S. Jose,et al.  Predictive modeling of insulin release profile from cross-linked chitosan microspheres. , 2013, European journal of medicinal chemistry.

[52]  M. Gadhave,et al.  Toxicity induced by nanoparticles , 2012 .

[53]  E. Souto,et al.  Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): in vitro and ex vivo studies. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[54]  Suchi Smita,et al.  Nanoparticles in the environment: assessment using the causal diagram approach , 2012, Environmental Health.

[55]  M. Strømme,et al.  Current status and future prospects of nanotechnology in cosmetics , 2012 .

[56]  B. Han,et al.  Risk Assessment Principle for Engineered Nanotechnology in Food and Drug , 2012, Toxicological research.

[57]  E. Souto,et al.  Cross-linked chitosan microspheres for oral delivery of insulin: Taguchi design and in vivo testing. , 2012, Colloids and surfaces. B, Biointerfaces.

[58]  R. Müller,et al.  Cationic solid lipid nanoparticles (cSLN): structure, stability and DNA binding capacity correlation studies. , 2011, International journal of pharmaceutics.

[59]  E. Souto,et al.  Colon specific chitosan microspheres for chronotherapy of chronic stable angina. , 2011, Colloids and surfaces. B, Biointerfaces.

[60]  Y. An,et al.  Research Trends of Ecotoxicity of Nanoparticles in Soil Environment , 2010, Toxicological research.

[61]  E. Souto,et al.  Nanoparticulate strategies for effective delivery of poorly soluble therapeutics. , 2010, Therapeutic delivery.

[62]  Brian C. Sandoval Perspectives on FDA's Regulation of Nanotechnology: Emerging Challenges and Potential Solutions , 2009 .

[63]  E. Vega,et al.  Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres. , 2009, Colloids and surfaces. B, Biointerfaces.

[64]  Dhoom Singh Mehta,et al.  Future impact of nanotechnology on medicine and dentistry , 2008, Journal of Indian Society of Periodontology.

[65]  Hari Singh Nalwa,et al.  Nanotechnology and health safety--toxicity and risk assessments of nanostructured materials on human health. , 2007, Journal of nanoscience and nanotechnology.

[66]  David B Resnik,et al.  Ethics in nanomedicine. , 2007, Nanomedicine.

[67]  Tom Quirk,et al.  There’s Plenty of Room at the Bottom , 2006, Size Really Does Matter.

[68]  P. Schulte,et al.  Ethical and Scientific Issues of Nanotechnology in the Workplace , 2006, Environmental health perspectives.

[69]  Maureen R. Gwinn,et al.  Nanoparticles: Health Effects—Pros and Cons , 2006, Environmental health perspectives.

[70]  Andrew D. Maynard,et al.  Nanotechnology: assessing the risks , 2006 .

[71]  Margaret R. Taylor,et al.  Environmental risks of nanotechnology: National Nanotechnology Initiative funding, 2000-2004. , 2006, Environmental science & technology.

[72]  Douglas K. Martin,et al.  Nanotechnology and the Developing World , 2005, PLoS medicine.

[73]  Ann P. Dowling,et al.  Development of nanotechnologies , 2004 .

[74]  O. Salata,et al.  Applications of nanoparticles in biology and medicine , 2004, Journal of nanobiotechnology.

[75]  Masanori Sugisaka,et al.  From molecular biology to nanotechnology and nanomedicine. , 2002, Bio Systems.

[76]  J. Gilman,et al.  Nanotechnology , 2001 .

[77]  E. Souto,et al.  Alginate Nanoparticles for Drug Delivery and Targeting. , 2019, Current pharmaceutical design.

[78]  J. A. Ataide,et al.  In vitro SPF and Photostability Assays of Emulsion Containing Nanoparticles with Vegetable Extracts Rich in Flavonoids , 2018, AAPS PharmSciTech.

[79]  A. Silva,et al.  Memantine-Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma. , 2018, Small.

[80]  M. Chorilli,et al.  Recent advances in the use of metallic nanoparticles with antitumoral action. , 2018, Current medicinal chemistry.

[81]  Ashok K. Singh,et al.  Chapter 10 – The Past, Present, and the Future of Nanotechnology , 2016 .

[82]  C. Geraci,et al.  Nanotechnology Overview: Opportunities and Challenges , 2016 .

[83]  M. Alice Ottoboni,et al.  The dose makes the poison. , 2011, Nature nanotechnology.

[84]  Jeremy J. Ramsden,et al.  Nanosystems and their design , 2011 .

[85]  R. Müller,et al.  Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. , 2010, Handbook of experimental pharmacology.

[86]  S. Doktorovová,et al.  Chapter 6 - Solid lipid nanoparticle formulations pharmacokinetic and biopharmaceutical aspects in drug delivery. , 2009, Methods in enzymology.

[87]  S. Saha,et al.  Ethical issues in nanotechnology. , 2007, Journal of long-term effects of medical implants.