Lyndon-Shirshov basis and anti-commutative algebras ∗

Abstract Chen, Fox, Lyndon (1958) [10] and Shirshov (1958) [29] introduced non-associative Lyndon–Shirshov words and proved that they form a linear basis of a free Lie algebra, independently. In this paper we give another approach to definition of Lyndon–Shirshov basis, i.e., we find an anti-commutative Grobner–Shirshov basis S of a free Lie algebra such that Irr ( S ) is the set of all non-associative Lyndon–Shirshov words, where Irr ( S ) is the set of all monomials of N ( X ) , a basis of the free anti-commutative algebra on X, not containing maximal monomials of polynomials from S. Following from Shirshovʼs anti-commutative Grobner–Shirshov bases theory (Shirshov, 1962 [32] ), the set Irr ( S ) is a linear basis of a free Lie algebra.

[1]  Marcel Paul Schützenberger,et al.  On a factorisation of free monoids , 1965 .

[2]  Dominique Perrin,et al.  The origins of combinatorics on words , 2007, Eur. J. Comb..

[3]  Leonid A. Bokut,et al.  Algorithmic and Combinatorial Algebra , 1994 .

[4]  Simeon Ivanov,et al.  Identities of Algebras and their Representations , 1994 .

[5]  P. Hall,et al.  A Contribution to the Theory of Groups of Prime‐Power Order , 1934 .

[6]  R. Lyndon On Burnside’s problem , 1954 .

[7]  A. I. Shirshov Some Algorithmic Problems for ε-algebras , 2009 .

[8]  Marshall Hall,et al.  A basis for free Lie rings and higher commutators in free groups , 1950 .

[9]  R. Bryant,et al.  Invariant Bases for Free Lie Rings , 2002 .

[10]  Yuqun Chen,et al.  Anti-commutative Gröbner-Shirshov basis of a free Lie algebra , 2008, 0804.0914.

[11]  A. I. Shirshov Subalgebras of Free Lie Algebras , 2009 .

[12]  Gérard Viennot Algèbres de Lie libres et monoïdes libres : bases des algèbres de Lie libres et factorisations des monoïdes libres , 1978 .

[13]  C. Reutenauer Free Lie Algebras , 1993 .

[14]  Yuri Bahturin Infinite Dimensional Lie Superalgebras , 1992 .

[15]  Filtrations and distortion in infinite-dimensional algebras , 2010, 1002.0015.

[16]  George Gratzer,et al.  Universal Algebra , 1979 .

[17]  A. I. Shirshov On Free Lie Rings , 2009 .

[18]  R. Lyndon,et al.  Free Differential Calculus, IV. The Quotient Groups of the Lower Central Series , 1958 .

[19]  M. Lothaire Combinatorics on words: Bibliography , 1997 .

[20]  V. Kharchenko,et al.  PBW-bases of coideal subalgebras and a freeness theorem , 2008 .

[21]  Desmond Fearnley-Sander,et al.  Universal Algebra , 1982 .

[22]  Bases, filtrations and module decompositions of free Lie algebras , 2008 .

[23]  E. S. Chibrikov,et al.  A right normed basis for free Lie algebras and Lyndon–Shirshov words , 2006 .

[24]  Groupes, Anneaux De Lie Et Probleme De Burnside , 2011 .

[25]  V. A. Ufnarovskij Combinatorial and Asymptotic Methods in Algebra , 1995 .

[26]  On a formal product over the conjugate classes in a free group , 1963 .

[27]  A. I. Shirshov Some Problems in the Theory of Rings that are Nearly Associative , 2009 .

[28]  Yuqun Chen,et al.  Groebner-Shirshov Bases for Lie Algebras: after A. I. Shirshov , 2008, 0804.1254.