Benchmarking the oxygen reduction reaction activity of Pt-based catalysts using standardized rotating disk electrode methods

[1]  Jason W. Zack,et al.  Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness , 2015 .

[2]  Jason W. Zack,et al.  Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique I. Impact of Impurities, Measurement Protocols and Applied Corrections , 2015 .

[3]  B. Pollet,et al.  The importance of ultrasonic parameters in the preparation of fuel cell catalyst inks , 2014 .

[4]  H. Yano,et al.  Electrochemical quartz crystal microbalance analysis of the oxygen reduction reaction on Pt-based electrodes. Part 2: adsorption of oxygen species and ClO4(-) anions on Pt and Pt-Co alloy in HClO4 solutions. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[5]  J. Jorné,et al.  Transient Platinum Oxide Formation and Oxygen Reduction on Carbon-Supported Platinum and Platinum-Cobalt Alloy Electrocatalysts , 2014 .

[6]  R. Rocheleau,et al.  Analytical Procedure for Accurate Comparison of Rotating Disk Electrode Results for the Oxygen Reduction Activity of Pt/C , 2014 .

[7]  J. Kirkensgaard,et al.  Investigating the activity enhancement on PtxCo1−x alloys induced by a combined strain and ligand effect , 2014 .

[8]  M. Arenz,et al.  The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. , 2013, Nature materials.

[9]  S. Kocha,et al.  Enhanced Oxygen Reduction Activity on Pt/C for Nafion-free, Thin, Uniform Films in Rotating Disk Electrode Studies , 2013 .

[10]  Feng Wang,et al.  Highly graphitic carbon black-supported platinum nanoparticle catalyst and its enhanced electrocatalytic activity for the oxygen reduction reaction in acidic medium , 2013 .

[11]  Jason W. Zack,et al.  Influence of Ink Composition on the Electrochemical Properties of Pt/C Electrocatalysts , 2013 .

[12]  A. Kucernak,et al.  Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport. , 2013, Physical chemistry chemical physics : PCCP.

[13]  T. Akiyama,et al.  High durability of Pt/graphitized carbon catalysts for polymer electrolyte fuel cells prepared by the nanocapsule method , 2013 .

[14]  Toshihiko Yoshida,et al.  Analysis and modeling of PEMFC degradation: Effect on oxygen transport , 2012 .

[15]  B. Pollet,et al.  Nafion®-stabilised Pt/C electrocatalysts with efficient catalyst layer ionomer distribution for proton exchange membrane fuel cells , 2012 .

[16]  Ke Ke,et al.  An accurate evaluation for the activity of nano-sized electrocatalysts by a thin-film rotating disk electrode: Oxygen reduction on Pt/C , 2012 .

[17]  Wenbin Gu,et al.  Impact of Platinum Loading and Catalyst Layer Structure on PEMFC Performance , 2012 .

[18]  V. Stamenkovic,et al.  Advanced Platinum Alloy Electrocatalysts for the Oxygen Reduction Reaction , 2012 .

[19]  Shyam S. Kocha,et al.  Electrochemical Degradation: Electrocatalyst and Support Durability , 2012 .

[20]  Kazuhiko Shinohara,et al.  Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan , 2011 .

[21]  I. L. Singer,et al.  Impact of film drying procedures on RDE characterization of Pt/VC electrocatalysts , 2011 .

[22]  M. Arenz,et al.  The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models. , 2011, Journal of the American Chemical Society.

[23]  N. Marković,et al.  Platinum-alloy nanostructured thin film catalysts for the oxygen reduction reaction. , 2011 .

[24]  M. Chi,et al.  Synthesis of Homogeneous Pt-Bimetallic Nanoparticles as Highly Efficient Electrocatalysts , 2011 .

[25]  S. Hirai,et al.  Effects of Nafion ionomer and carbon particles on structure formation in a proton-exchange membran , 2011 .

[26]  Hubert A. Gasteiger,et al.  Effects of Catalyst Carbon Support on Proton Conduction and Cathode Performance in PEM Fuel Cells , 2011 .

[27]  H. Yano,et al.  Electrochemical quartz crystal microbalance analysis of the oxygen reduction reaction on Pt-based electrodes. Part 1: Effect of adsorbed anions on the oxygen reduction activities of Pt in HF, HClO4, and H2SO4 solutions. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[28]  S. Kocha,et al.  Examination of the activity and durability of PEMFC catalysts in liquid electrolytes , 2010 .

[29]  Dusan Strmcnik,et al.  On the importance of correcting for the uncompensated Ohmic resistance in model experiments of the Oxygen Reduction Reaction , 2010 .

[30]  J. Jorné,et al.  Proton Conduction in PEM Fuel Cell Cathodes: Effects of Electrode Thickness and Ionomer Equivalent Weight , 2010 .

[31]  K. Swider-Lyons,et al.  Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. , 2010, Analytical chemistry.

[32]  Hubert A. Gasteiger,et al.  Proton Conduction and Oxygen Reduction Kinetics in PEM Fuel Cell Cathodes: Effects of Ionomer-to-Carbon Ratio and Relative Humidity , 2009 .

[33]  M. Watanabe,et al.  Role of adsorbed species in methanol oxidation on Pt studied by ATR-FTIRAS combined with linear potential sweep voltammetry , 2009 .

[34]  S. Ye,et al.  A thermostatic cell with gas diffusion electrode for oxygen reduction reaction under fuel cell relevant conditions , 2009 .

[35]  A. Kucernak,et al.  Studying the oxygen reduction and hydrogen oxidation reactions under realistic fuel cell conditions , 2008 .

[36]  M. Arenz,et al.  Measurement of oxygen reduction activities via the rotating disc electrode method : from Pt model surfaces to carbon-supported high surface area catalysts. , 2008 .

[37]  R. Crooks,et al.  Effect of particle size on the kinetics of the electrocatalytic oxygen reduction reaction catalyzed by Pt dendrimer-encapsulated nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[38]  J. Jorné,et al.  Cathode Catalyst Utilization for the ORR in a PEMFC Analytical Model and Experimental Validation , 2007 .

[39]  H. Yano,et al.  Temperature dependence of oxygen reduction activity at Nafion-coated bulk Pt and Pt/carbon black catalysts. , 2006, The journal of physical chemistry. B.

[40]  E. Higuchi,et al.  Effect of loading level in platinum-dispersed carbon black electrocatalysts on oxygen reduction activity evaluated by rotating disk electrode , 2005 .

[41]  P N Ross,et al.  The impact of geometric and surface electronic properties of pt-catalysts on the particle size effect in electrocatalysis. , 2005, The journal of physical chemistry. B.

[42]  H. Gasteiger,et al.  Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , 2005 .

[43]  M. Watanabe,et al.  Temperature dependence of oxygen reduction activity at Pt-Fe, Pt-Co, and Pt-Ni alloy electrodes. , 2005, The journal of physical chemistry. B.

[44]  M. Itagaki,et al.  Temperature-dependence of oxygen reduction activity at a platinum electrode in an acidic electrolyte solution investigated with a channel flow double electrode , 2005 .

[45]  M. Itagaki,et al.  Electroreduction mechanism of oxygen investigated by electrochemical impedance spectroscopy , 2003 .

[46]  Hubert A. Gasteiger,et al.  Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study , 2001 .

[47]  E. Passalacqua,et al.  Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC , 1999 .

[48]  Hiroshi Igarashi,et al.  Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys , 1999 .

[49]  R. Savinell,et al.  O 2 Reduction on an Ink‐Type Rotating Disk Electrode Using Pt Supported on High‐Area Carbons , 1998 .

[50]  H. Gasteiger,et al.  Characterization of High‐Surface‐Area Electrocatalysts Using a Rotating Disk Electrode Configuration , 1998 .

[51]  R. Savinell,et al.  Kinetics of O{sub 2} reduction on a Pt electrode covered with a thin film of solid polymer electrolyte , 1997 .

[52]  Yasushi Murakami,et al.  Size effects of platinum particles on the electroreduction of oxygen , 1996 .

[53]  H. Gasteiger,et al.  Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution. Rotating ring - Pt(hkl) disk studies , 1995 .

[54]  Robert Durand,et al.  Kinetic study of electrochemical reactions at catalyst-recast ionomer interfaces from thin active layer modelling , 1994 .

[55]  T. Maoka Electrochemical reduction of oxygen on small platinum particles supported on carbon in concentrated phosphoric acid. I: Effects of platinum content in the catalyst layer and operating temperature of the electrode , 1988 .

[56]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .

[57]  Pehr Björnbom,et al.  Modelling of a double-layered PTFE-bonded oxygen electrode , 1987 .

[58]  M. Peuckert,et al.  Oxygen Reduction on Small Supported Platinum Particles , 1986 .

[59]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[60]  L. J. Bregoli The influence of platinum crystallite size on the electrochemical reduction of oxygen in phosphoric acid , 1978 .

[61]  H. R. Kunz,et al.  The effect of electrolyte concentration on the catalytic activity of platinum for electrochemical oxygen reduction in phosphoric acid , 1978 .

[62]  G. Gruver,et al.  The Catalytic Activity of Platinum Supported on Carbon for Electrochemical Oxygen Reduction in Phosphoric Acid , 1975 .

[63]  P. Stonehart,et al.  Platinum crystallite size considerations for electrocatalytic oxygen reduction—I , 1973 .

[64]  W. Vogel,et al.  Reduction of oxygen on Teflon-backed platinum black electrodes , 1972 .

[65]  K. F. Blurton,et al.  The Electrochemical Activity of Dispersed Platinum , 1972 .

[66]  S. Smith,et al.  Methods for Characterizing the Structure and Electrochemical Behavior of Teflon‐Bonded Pt Electrodes , 1969 .

[67]  J. Giner,et al.  The Mechanism of Operation of the Teflon‐Bonded Gas Diffusion Electrode: A Mathematical Model , 1969 .

[68]  L. G. Austin,et al.  An Experimental Study of the Mode of Operation of Porous Gas‐Diffusion Electrodes with Hydrogen Fuel , 1967 .

[69]  S. Srinivasan,et al.  Fundamental Equations of Electrochemical Kinetics at Porous Gas‐Diffusion Electrodes , 1967 .

[70]  H. Gerischer,et al.  Elektrolyse im strömungskanal: Ein verfahren zur untersuchung von reaktions und zwischenprodukten , 1965 .

[71]  K. Gubbins,et al.  The Solubility and Diffusivity of Oxygen in Electrolytic Solutions , 1965 .