Particle Filters for Robot Navigation

Autonomous navigation is an essential capability for mobile robots. In order to operate robustly, a robot needs to know what the environment looks like, where it is in its environment, and how to navigate in it. This works summarizes approaches that address these three problems and that use particle filters as their main underlying model for representing beliefs. We illustrate that these filters are powerful tools that can robustly estimate the state of the robot and its environment and that it is also well-suited to make decisions about how to navigate in order to minimize its uncertainty of the joint belief about its own position and the state of the environment.

[1]  Sanjiv Singh,et al.  The 2005 DARPA Grand Challenge: The Great Robot Race , 2007 .

[2]  Wolfram Burgard,et al.  Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Robotics.

[3]  Andrea Censi,et al.  An ICP variant using a point-to-line metric , 2008, 2008 IEEE International Conference on Robotics and Automation.

[4]  Wolfram Burgard,et al.  Exploring Unknown Environments with Mobile Robots using Coverage Maps , 2003, IJCAI.

[5]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[6]  James J. Little,et al.  σMCL: Monte-Carlo Localization for Mobile Robots with Stereo Vision , 2005, Robotics: Science and Systems.

[7]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[8]  Tingting Xu,et al.  The Autonomous City Explorer: Towards Natural Human-Robot Interaction in Urban Environments , 2009, Int. J. Soc. Robotics.

[9]  Gregory Dudek,et al.  Online control policy optimization for minimizing map uncertainty during exploration , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[10]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[11]  Wolfram Burgard,et al.  A navigation system for robots operating in crowded urban environments , 2013, 2013 IEEE International Conference on Robotics and Automation.

[12]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[13]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[14]  Brian Yamauchi,et al.  Frontier-based exploration using multiple robots , 1998, AGENTS '98.

[15]  Sven Koenig,et al.  Improved analysis of greedy mapping , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[16]  Wolfram Burgard,et al.  Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..

[17]  Wolfram Burgard,et al.  Analyzing gaussian proposal distributions for mapping with rao-blackwellized particle filters , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Wolfram Burgard,et al.  On the position accuracy of mobile robot localization based on particle filters combined with scan matching , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[20]  Kurt Konolige,et al.  A practical, decision-theoretic approach to multi-robot mapping and exploration , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[21]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[22]  Wolfram Burgard,et al.  Exploration with active loop-closing for FastSLAM , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[23]  Horst-Michael Groß,et al.  Omnivision-based probabilistic self-localization for a mobile shopping assistant continued , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[24]  Jun S. Liu,et al.  Metropolized independent sampling with comparisons to rejection sampling and importance sampling , 1996, Stat. Comput..

[25]  Tom Duckett,et al.  Localization for Mobile Robots using Panoramic Vision, Local Features and Particle Filter , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[26]  Dieter Fox,et al.  Adapting the Sample Size in Particle Filters Through KLD-Sampling , 2003, Int. J. Robotics Res..

[27]  Alexei Makarenko,et al.  An experiment in integrated exploration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Wolfram Burgard,et al.  Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[29]  Ben J. A. Kröse,et al.  Active Appearance-Based Robot Localization Using Stereo Vision , 2005, Auton. Robots.

[30]  Alexei Makarenko,et al.  Information based adaptive robotic exploration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Frank P. Ferrie,et al.  Autonomous exploration: driven by uncertainty , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Kevin P. Murphy,et al.  Bayesian Map Learning in Dynamic Environments , 1999, NIPS.

[33]  Wolfram Burgard,et al.  Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva , 2000, Int. J. Robotics Res..

[34]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[35]  Nando de Freitas,et al.  Real-Time Monitoring of Complex Industrial Processes with Particle Filters , 2002, NIPS.

[36]  Sanjiv Singh,et al.  The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, George Air Force Base, Victorville, California, USA , 2009, The DARPA Urban Challenge.

[37]  Manuela M. Veloso,et al.  Sensor resetting localization for poorly modelled mobile robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[38]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[39]  Martin David Adams,et al.  Laser and Radar Based Robotic Perception , 2011, Found. Trends Robotics.

[40]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[41]  Wolfram Burgard,et al.  Collaborative multi-robot exploration , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[42]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[43]  Dirk Thomas,et al.  Particle-Filter-Based Self-localization Using Landmarks and Directed Lines , 2005, RoboCup.

[44]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[45]  Stephen R. Marsland,et al.  Fast, On-Line Learning of Globally Consistent Maps , 2002, Auton. Robots.

[46]  Rui P. Rocha,et al.  Exploring information theory for vision-based volumetric mapping , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[47]  Sebastian Thrun,et al.  FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges , 2003, IJCAI 2003.

[48]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[49]  Ronald Parr,et al.  DP-SLAM: fast, robust simultaneous localization and mapping without predetermined landmarks , 2003, IJCAI 2003.

[50]  Wolfram Burgard,et al.  An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[51]  Wolfram Burgard,et al.  Coastal Navigation { Robot Motion with Uncertainty , 1998, AAAI 1998.

[52]  Wolfram Burgard,et al.  Metric Localization with Scale-Invariant Visual Features Using a Single Perspective Camera , 2006, EUROS.

[53]  Ewald von Puttkamer,et al.  Keeping track of position and orientation of moving indoor systems by correlation of range-finder scans , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).