NWChem for Materials Science

This paper focuses on describing the computational chemistry software, NWChem, and its use in materials science research. The current functionalities and capabilities are outlined, as well as future features. Specific computational examples are given to show the flexibility and usefulness of NWChem to answering materials science problems.

[1]  Jack C. Wells,et al.  Neuromorphic Pattern Recognition Using Arrays of Quantum Dots , 2000 .

[2]  C. Foss,et al.  Metal Nanoparticles: Synthesis, Characterization, and Applications , 2001 .

[3]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[4]  John P. Perdew,et al.  Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities , 1983 .

[5]  E. Aprá,et al.  Density-functional study of Pt 13 and Pt 55 cuboctahedral clusters , 2000 .

[6]  Walter C. Ermler,et al.  Ab initio relativistic effective potentials with spin–orbit operators. IV. Cs through Rn , 1985 .

[7]  Michael J. Frisch,et al.  Ab initio quantum chemistry on the Cray T3E massively parallel supercomputer: II , 1998 .

[8]  Jon Baker,et al.  Ab initio quantum chemistry on PC-based parallel supercomputers , 2000, Parallel Comput..

[9]  R. W. Warren,et al.  Fractional occupation numbers and density functional energy gradients within the linear combination of Gaussian-type orbitals approach , 1996 .

[10]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[11]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[12]  J. Cioslowski,et al.  Endohedral motions inside capped single-walled carbon nanotubes , 2003 .

[13]  Krieger,et al.  Capacitive nature of atomic-sized structures. , 1995, Physical review. B, Condensed matter.

[14]  A. Corma,et al.  On the Preferential Location of Al and Proton Siting in Zeolites: A Computational and Infrared Study , 2002 .

[15]  L. Sohn,et al.  Mesoscopic electron transport , 1997 .

[16]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[17]  E. Aprá,et al.  Density-Functional Calculations on Platinum Nanoclusters: Pt13, Pt38, and Pt55 , 2003 .

[18]  C. Caroli,et al.  Direct calculation of the tunneling current , 1971 .

[19]  Michael J. Frisch,et al.  Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .

[20]  Eric J. Bylaska,et al.  Ab Initio and Empirical Potential Studies of Defect Properties in 3C-SiC , 2001 .

[21]  Robert A. Wolkow,et al.  Patterning of Vinylferrocene on H−Si(100) via Self-Directed Growth of Molecular Lines and STM-Induced Decomposition , 2002 .

[22]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[23]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[24]  Harris,et al.  1/R expansion for H2 +: Calculation of exponentially small terms and asymptotics. , 1986, Physical review. A, General physics.

[25]  D. Sánchez-Portal,et al.  Structure and thermal stability of gold nanoclusters: The Au38 case , 1999 .

[26]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[27]  R. Ahlrichs,et al.  Performance of parallel TURBOMOLE for density functional calculations , 1998, J. Comput. Chem..

[28]  W. J. Weber,et al.  Native defect properties in β-SiC: Ab initio and empirical potential calculations , 2001 .

[29]  J. G. Snijders,et al.  Towards an order-N DFT method , 1998 .

[30]  Jon Baker,et al.  Q‐Chem 2.0: a high‐performance ab initio electronic structure program package , 2000, J. Comput. Chem..

[31]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[32]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[33]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .

[34]  Evert Jan Baerends,et al.  Towards an order , 1998 .

[35]  Ian T. Foster,et al.  ChemIo: High Performance Parallel I/o for Computational Chemistry Applications , 1998, Int. J. High Perform. Comput. Appl..

[36]  Robert J. Harrison,et al.  Global arrays: A nonuniform memory access programming model for high-performance computers , 1996, The Journal of Supercomputing.

[37]  Konstantin K. Likharev,et al.  Single-electron devices and their applications , 1999, Proc. IEEE.

[38]  I. Zaragoza,et al.  The cracking of n-heptane in the gas phase state and in the HZSM-5 zeolite: a quantum molecular dynamics study , 2002 .

[39]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[40]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[41]  Özgür Türel,et al.  CrossNets: possible neuromorphic networks based on nanoscale components , 2003, Int. J. Circuit Theory Appl..

[42]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[43]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[44]  Wang,et al.  Formation energies, abundances, and the electronic structure of native defects in cubic SiC. , 1988, Physical review. B, Condensed matter.

[45]  J. Cioslowski,et al.  Electronic structures and energetics of [5,5] and [9,0] single-walled carbon nanotubes. , 2002, Journal of the American Chemical Society.

[46]  Xiaoguang Zhang,et al.  Generalized conductance formula for the multiband tight-binding model , 2002 .

[47]  M. Wasielewski,et al.  Conformational gating of long distance electron transfer through wire-like bridges in donor-bridge-acceptor molecules. , 2001, Journal of the American Chemical Society.

[48]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[49]  Jens Kortus,et al.  Strategies for massively parallel local-orbital-based electronic structure methods , 2000 .

[50]  A Self-Consistent Charge-Embedding Methodology for ab Initio Quantum Chemical Cluster Modeling of Ionic Solids and Surfaces: Application to the (001) Surface of Hematite (α-Fe2O3)† , 2002 .

[51]  K. Morokuma,et al.  ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition , 1996 .

[52]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[53]  Lai‐Sheng Wang,et al.  Coulomb- and antiferromagnetic-induced fission in doubly charged cubelike fe-s clusters. , 2002, Physical review letters.

[54]  David E. Bernholdt,et al.  Parallel computational chemistry made easier: The development of NWChem , 1995 .

[55]  Timothy J. Lee,et al.  An efficient formulation and implementation of the analytic energy gradient method to the single and double excitation coupled-cluster wave function - Application to Cl2O2 , 1991 .

[56]  A. Becke Correlation energy of an inhomogeneous electron gas: A coordinate‐space model , 1988 .

[57]  Chan,et al.  Density-functional energies and forces with Gaussian-broadened fractional occupations. , 1994, Physical review. B, Condensed matter.

[58]  Johannes Grotendorst,et al.  Modern methods and algorithms of quantum chemistry , 2000 .

[59]  R. P. Andres,et al.  Coulomb Staircase at Room Temperature in a Self-Assembled Molecular Nanostructure , 1996, Science.

[60]  Electronic, vibrational and magnetic properties of a novel C48N12 aza-fullerene , 2003, cond-mat/0301192.

[61]  David E. Bernholdt,et al.  High performance computational chemistry: An overview of NWChem a distributed parallel application , 2000 .

[62]  R. Nieminen,et al.  Divacancy in 3C- and 4H-SiC: An extremely stable defect , 2002 .

[63]  R. Santamaria,et al.  The catalytic cracking of hydrocarbons: paraffins in the HZSM-5 zeolite. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[64]  R. Murray,et al.  28 KDA ALKANETHIOLATE-PROTECTED AU CLUSTERS GIVE ANALOGOUS SOLUTION ELECTROCHEMISTRY AND STM COULOMB STAIRCASES , 1997 .

[65]  S. Wang,et al.  SIMULATION OF NONDYNAMICAL CORRELATION IN DENSITY FUNCTIONAL CALCULATIONS BY THE OPTIMIZED FRACTIONAL ORBITAL OCCUPATION APPROACH : APPLICATION TO THE POTENTIAL ENERGY SURFACES OF O3 AND SO2 , 1996 .

[66]  John M. Newsam,et al.  Parallel implementation of a mesh‐based density functional electronic structure code , 1995, J. Comput. Chem..

[67]  G. Sastre,et al.  A Computational Study on the Templating Ability of the Trispyrrolidinium Cation in the Synthesis of ZSM-18 Zeolite , 2001 .

[68]  John C. Slater,et al.  Quantum Theory of Molecules and Solids , 1951 .

[69]  U. Landman,et al.  Electronic Structure of PassivatedAu38(SCH3)24Nanocrystal , 1999 .