Similarity-based Opponent Modelling using Imperfect Domain Theories

This paper proposes a similarity-based approach for opponent modelling in multi-agent games. The classification accuracy is increased by adding derived attributes from imperfect domain theories to the similarity measure. The main contributions are to show how different forms of domain knowledge can be incorporated into similarity measures for opponent modelling, and to show that the situation space of the opponent modelling approach is not required to be the same as the situation space of the opponent players. Our approach has been implemented and evaluated in the domain of simulated soccer.

[2]  Jelle R. Kok,et al.  UvA Trilearn 2001 Team Description , 2001, RoboCup.

[3]  Agnar Aamodt,et al.  Explanation-Driven Case-Based Reasoning , 1993, EWCBR.

[4]  Michael M. Richter,et al.  Fallbasiertes Schliessen: Vergangenheit, Gegenwart, Zukunft , 2003, Inform. Spektrum.

[5]  Eric O. Postma,et al.  On-Line Adaptation of Game Opponent AI in Simulation and in Practice , 2003, GAME-ON.

[6]  Jörg Denzinger,et al.  Improving modeling of other agents using stereotypes and compactification of observations , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[7]  Frieder Stolzenburg,et al.  Multiagent Matching Algorithms with and without Coach , 2006, J. Decis. Syst..

[8]  David Carmel,et al.  Learning Models of Intelligent Agents , 1996, AAAI/IAAI, Vol. 1.

[9]  Derek Bridge,et al.  A Yardstick for the Evaluation of Case-Based Classifiers , 1996 .

[10]  Tamio Arai,et al.  Distributed Autonomous Robotic Systems 3 , 1998 .

[11]  Ryszard S. Michalski,et al.  Conceptual Clustering: Inventing Goal-Oriented Classifications of Structured Objects , 1986 .

[12]  Henry A. Kautz A formal theory of plan recognition , 1987 .

[13]  Peter D. Turney The Management of Context-Sensitive Features: A Review of Strategies , 2002, ArXiv.

[14]  Gal A. Kaminka,et al.  Symbolic Behavior-Recognition , 2004 .

[15]  Timo Steffens,et al.  Adapting Similarity Measures to Agent Types in Opponent Modelling , 2004 .

[16]  Manuela M. Veloso,et al.  On Behavior Classification in Adversarial Environments , 2000, DARS.

[17]  Martin A. Riedmiller,et al.  Brainstormers 2003 - Team Description , 2003 .

[18]  D. Gentner,et al.  Respects for similarity , 1993 .

[20]  C. Rogowski Model-based Opponent Modelling in Domains Beyond the Prisoner's Dilemma , 2004 .

[21]  Ryszard S. Michalski,et al.  Machine learning: an artificial intelligence approach volume III , 1990 .

[22]  Larry A. Rendell,et al.  A Practical Approach to Feature Selection , 1992, ML.

[23]  Ralph Bergmann,et al.  Experience Management , 2002, Lecture Notes in Computer Science.

[24]  Hiroaki Kitano,et al.  The RoboCup Synthetic Agent Challenge 97 , 1997, IJCAI.

[25]  Jörg Walter Schaaf,et al.  Detecting Gestalts in CAD-Plans to be Used as Indices for Case-Retrieval in Architecture , 1994, KI.

[26]  Igor Kononenko,et al.  Estimating Attributes: Analysis and Extensions of RELIEF , 1994, ECML.

[27]  Joscha Bach,et al.  Recognizing and Predicting Agent Behavior with Case Based Reasoning , 2003, RoboCup.

[28]  R. Bergmann On the Use of Taxonomies for Representing Case Features and Local Similarity Measures , 1998 .

[29]  Ray Bareiss,et al.  Concept Learning and Heuristic Classification in WeakTtheory Domains , 1990, Artif. Intell..

[30]  Jafar Habibi,et al.  Using a Two-Layered Case-Based Reasoning for Prediction in Soccer Coach , 2003, MLMTA.