Effect of quadrupole deformation & temperature on bubble structure in N = 14 nuclei

[1]  B. K. Agrawal,et al.  A systematic study of the factors affecting central depletion in nuclei , 2019, Journal of Physics G: Nuclear and Particle Physics.

[2]  B. K. Agrawal,et al.  Anti-bubble effect of temperature & deformation: A systematic study for nuclei across all mass regions between A = 20–300 , 2018, Physics Letters B.

[3]  S. Jain,et al.  Bubble structure in magic nuclei , 2018, Physics Letters B.

[4]  N. D. Dang,et al.  Bubble nuclei within the self-consistent Hartree-Fock mean field plus pairing approach , 2018 .

[5]  S. Jain,et al.  Implications of occupancy of 2s1/2 state in sd-shell within RMF+BCS approach , 2017 .

[6]  S. Jain,et al.  Two-proton radioactivity with 2p halo in light mass nuclei A = 18–34 , 2017, 1710.10412.

[7]  W. Nazarewicz,et al.  Central depression in nucleonic densities: Trend analysis in the nuclear density functional theory approach , 2017, 1706.05759.

[8]  C. Borcea,et al.  A proton density bubble in the doubly magic 34Si nucleus , 2016, Nature Physics.

[9]  W. Long,et al.  Pseudospin-orbit splitting and its consequences for the central depression in nuclear density , 2016 .

[10]  A. A. Usmani,et al.  A relativistic mean field study of multi-strange system , 2014, 1406.4612.

[11]  X. Y. Wu,et al.  Low-energy structure and anti-bubble effect of dynamical correlations in 46 Ar , 2013, 1311.0371.

[12]  J. Yao,et al.  Does a proton “bubble” structure exist in the low-lying states of 34Si? , 2013, 1305.4690.

[13]  H. Nakada,et al.  Tensor-force effects on single-particle levels and proton bubble structure around the Z or N=20 magic number , 2012, 1211.5634.

[14]  M. Bender,et al.  Structure of superheavy nuclei , 2012, 1210.2780.

[15]  H. Toki,et al.  STUDY OF TWO-PROTON RADIOACTIVITY WITHIN THE RELATIVISTIC MEAN-FIELD PLUS BCS APPROACH , 2012, 1310.6913.

[16]  Yihao Wang,et al.  Tensor effects on the proton sd states in neutron-rich Ca isotopes and bubble structure of exotic nuclei , 2011 .

[17]  Jian-min Dong,et al.  Tensor Effect on Bubble Nuclei , 2011 .

[18]  J. Piekarewicz,et al.  Nuclear 'bubble' structure in Si-34 , 2009 .

[19]  P. Ring,et al.  The effective force NL3 revisited , 2009, 0909.1432.

[20]  N. Giai,et al.  Detecting bubbles in exotic nuclei , 2007, 0707.0363.

[21]  N. Giai,et al.  Evolution of the proton sd states in neutron-rich Ca isotopes , 2007, 0706.3287.

[22]  A. Sobiczewski,et al.  Description of structure and properties of superheavy nuclei , 2007 .

[23]  H. Toki,et al.  DESCRIPTION OF DRIP-LINE NUCLEI WITHIN THE RELATIVISTIC MEAN FIELD PLUS BCS APPROACH , 2004, nucl-th/0402013.

[24]  W. Long,et al.  New effective interactions in relativistic mean field theory with nonlinear terms and density-dependent meson-nucleon coupling , 2003, nucl-th/0311031.

[25]  J. Piekarewicz,et al.  Spin orbit splitting in low j neutron orbits and proton densities in the nuclear interior , 2003, nucl-th/0306042.

[26]  H. Toki,et al.  Relativistic Mean Field Theory for Deformed Nuclei with Pairing Correlations , 2003, nucl-th/0306038.

[27]  M. S. Weiss,et al.  Superheavy and hyperheavy nuclei in the form of bubbles or semi-bubbles , 1999 .

[28]  Peter Ring,et al.  Relativistic mean field theory in finite nuclei , 1996 .

[29]  G. Bertsch,et al.  Pair correlations near the neutron drip line , 1991 .

[30]  Jacques Treiner,et al.  Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line , 1984 .

[31]  D. Sprung,et al.  Possible bubble nuclei -36Ar and 200Hg , 1973 .

[32]  D. Vautherin,et al.  Nuclear deformation energy curves with the constrained Hartree-Fock method , 1973 .