Uncertainty quantification and control of kinetic models of tumour growth under clinical uncertainties

[1]  Laird Ak DYNAMICS OF TUMOR GROWTH. , 1964 .

[2]  A. K. Laird Dynamics of Tumour Growth , 1964, British Journal of Cancer.

[3]  Laird Ak Dynamics of Tumour Growth: Comparison of Growth Rates and Extrapolation of Growth Curve to One Cell , 1965 .

[4]  A. G. Nobile,et al.  Growth and extinction in random environment , 1980 .

[5]  J. Vacanti,et al.  Control of tumor growth in animals by infusion of an angiogenesis inhibitor. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[7]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[8]  L. Norton A Gompertzian model of human breast cancer growth. , 1988, Cancer research.

[9]  T. Wheldon Mathematical models in cancer research , 1988 .

[10]  James P. Freyer,et al.  Tumor growthin vivo and as multicellular spheroids compared by mathematical models , 1994, Bulletin of mathematical biology.

[11]  James H. Brown,et al.  A general model for ontogenetic growth , 2001, Nature.

[12]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[13]  Fabio Grizzi,et al.  Cancer Cell International Cancer: Looking for Simplicity and Finding Complexity , 2022 .

[14]  V. Giorno,et al.  A stochastic model in tumor growth. , 2006, Journal of theoretical biology.

[15]  G. Toscani,et al.  Kinetic models of opinion formation , 2006 .

[16]  S. Frank Dynamics of Cancer: Incidence, Inheritance, and Evolution , 2007 .

[17]  S. Jonathan Chapman,et al.  Mathematical Models of Avascular Tumor Growth , 2007, SIAM Rev..

[18]  Lorenzo Pareschi,et al.  Mean field mutation dynamics and the continuous Luria-Delbrück distribution. , 2011, Mathematical biosciences.

[19]  Milan Sonka,et al.  3D Slicer as an image computing platform for the Quantitative Imaging Network. , 2012, Magnetic resonance imaging.

[20]  Giuseppe Toscani,et al.  A KINETIC DESCRIPTION OF MUTATION PROCESSES IN BACTERIA , 2013 .

[21]  Philip Gerlee,et al.  The model muddle: in search of tumor growth laws. , 2012, Cancer research.

[22]  A. Bensoussan,et al.  Mean Field Games and Mean Field Type Control Theory , 2013 .

[23]  Dominik Wodarz,et al.  Tumor growth dynamics: insights into evolutionary processes. , 2013, Trends in ecology & evolution.

[24]  K. Painter,et al.  Mathematical modelling of glioma growth: the use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion. , 2013, Journal of theoretical biology.

[25]  John M. L. Ebos,et al.  Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth , 2014, PLoS Comput. Biol..

[26]  Natalia L. Komarova,et al.  Dynamics of Cancer: Mathematical Foundations of Oncology , 2014 .

[27]  Pierre Degond,et al.  Meanfield games and model predictive control , 2014, 1412.7517.

[28]  G Albi,et al.  Boltzmann-type control of opinion consensus through leaders , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Lorenzo Pareschi,et al.  Reviews , 2014 .

[30]  Lorenzo Pareschi,et al.  Kinetic description of optimal control problems and applications to opinion consensus , 2014, 1401.7798.

[31]  Massimo Fornasier,et al.  Mean-field sparse optimal control , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  T. Hillen,et al.  Glioma follow white matter tracts: a multiscale DTI-based model , 2015, Journal of mathematical biology.

[33]  Sonja Steffensen,et al.  Mean-field control and Riccati equations , 2015, Networks Heterog. Media.

[34]  Massimo Fornasier,et al.  A Boltzmann approach to mean-field sparse feedback control , 2016, 1611.03988.

[35]  Giacomo Dimarco,et al.  Are Tumor Cell Lineages Solely Shaped by Mechanical Forces? , 2017, Bulletin of Mathematical Biology.

[36]  Giacomo Dimarco,et al.  Uncertainty Quantification for Kinetic Models in Socio–Economic and Life Sciences , 2017, 1706.07500.

[37]  Mattia Zanella,et al.  Boltzmann-type models with uncertain binary interactions , 2017, 1709.02353.

[38]  Shi Jin,et al.  The Vlasov-Poisson-Fokker-Planck System with Uncertainty and a One-dimensional Asymptotic Preserving Method , 2017, Multiscale Model. Simul..

[39]  G. Toscani,et al.  Kinetic models for optimal control of wealth inequalities , 2018, The European Physical Journal B.

[40]  Kyle J Myers,et al.  Physiological random processes in precision cancer therapy , 2018, PloS one.

[41]  Elena Faggiano,et al.  A personalized mathematical tool for neuro-oncology: A clinical case study , 2018, International Journal of Non-Linear Mechanics.

[42]  L. Pareschi,et al.  Selective model-predictive control for flocking systems , 2016, Communications in Applied and Industrial Mathematics.

[43]  Jos'e A. Carrillo,et al.  Optimal consensus control of the Cucker-Smale model , 2018, 1802.01529.

[44]  C. Giverso,et al.  Influence of the mechanical properties of the necrotic core on the growth and remodelling of tumour spheroids , 2019, International Journal of Non-Linear Mechanics.

[45]  L. Preziosi,et al.  Kinetic models with non-local sensing determining cell polarization and speed according to independent cues , 2019, Journal of Mathematical Biology.

[46]  M. Zanella,et al.  Particle Based gPC Methods for Mean-Field Models of Swarming with Uncertainty , 2017, Communications in Computational Physics.

[47]  P. Newton,et al.  Cellular interactions constrain tumor growth , 2019, Proceedings of the National Academy of Sciences.

[48]  Mattia Zanella,et al.  Monte Carlo gPC Methods for Diffusive Kinetic Flocking Models with Uncertainties , 2019, Vietnam Journal of Mathematics.

[49]  Stochastic growth pattern of untreated human glioblastomas predicts the survival time for patients , 2020, Scientific Reports.

[50]  Lorenzo Pareschi,et al.  Monte Carlo stochastic Galerkin methods for the Boltzmann equation with uncertainties: space-homogeneous case , 2020, J. Comput. Phys..

[51]  G. Toscani,et al.  Social climbing and Amoroso distribution , 2020, 2006.02942.

[52]  G. Toscani,et al.  Control of tumour growth distributions through kinetic methods , 2020, 2006.06249.

[53]  Christina Surulescu,et al.  Mathematical modeling of glioma invasion: acid- and vasculature mediated go-or-grow dichotomy and the influence of tissue anisotropy , 2020, Appl. Math. Comput..

[54]  Mattia Zanella,et al.  Uncertainty damping in kinetic traffic models by driver-assist controls. , 2019 .

[55]  Lorenzo Pareschi,et al.  An introduction to uncertainty quantification for kinetic equations and related problems , 2020, Trails in Kinetic Theory.