Tracking in real time the crawling dynamics of adherent living cells with a high resolution surface plasmon microscope

We introduce a high resolution scanning surface plasmon microscope for long term imaging of living adherent mouse myoblast cells. The coupling of a high numerical aperture objective lens with a fibered heterodyne interferometer provides both enhanced sensitivity and long term stability. This microscope takes advantage of the plasmon resonance excitation and the amplification of the electromagnetic field in near-field distance to the gold coated coverslip. This plasmon enhanced evanescent wave microscopy is particularly attractive for the study of cell adhesion and motility since it can be operated without staining of the biological sample. We show that this microscope allows very long-term imaging of living samples, and that it can capture and follow the temporal deformation of C2C12 myoblast cell protusions (lamellipodia), during their migration on a at surface.

[1]  A. Arneodo,et al.  Time-lapse scanning surface plasmon microscopy of living adherent cells with a radially polarized beam. , 2016, Applied optics.

[2]  Françoise Argoul,et al.  Deciphering the internal complexity of living cells with quantitative phase microscopy: a multiscale approach , 2015, Journal of biomedical optics.

[3]  A. Dunn,et al.  Visualizing the interior architecture of focal adhesions with high-resolution traction maps. , 2015, Nano letters.

[4]  Anne L Plant,et al.  High resolution surface plasmon resonance imaging for single cells , 2014, BMC Cell Biology.

[5]  H. Kano,et al.  Label-free measurement of cell-electrode cleft gap distance with high spatial resolution surface plasmon microscopy. , 2014, ACS nano.

[6]  Thierry Livache,et al.  Spatial resolution in prism-based surface plasmon resonance microscopy. , 2014, Optics express.

[7]  Françoise Argoul,et al.  Diffraction phase microscopy: retrieving phase contours on living cells with a wavelet-based space-scale analysis , 2014, Journal of biomedical optics.

[8]  A. Arneodo,et al.  Guided wave microscopy: mastering the inverse problem. , 2013, Optics letters.

[9]  R. Voituriez,et al.  Protrusion fluctuations direct cell motion. , 2013, Biophysical journal.

[10]  S. Britland,et al.  Interfacial study of cell adhesion to liquid crystals using widefield surface plasmon resonance microscopy. , 2013, Colloids and surfaces. B, Biointerfaces.

[11]  E. Fort,et al.  Transmission surface plasmon resonance microscopy , 2013 .

[12]  L. Berguiga,et al.  Sensing Nanometer Depth of Focused Optical Fields with Scanning Surface Plasmon Microscopy , 2013, Plasmonics.

[13]  A. Arneodo,et al.  Wavelet-based decomposition of high resolution surface plasmon microscopy V(Z) curves at visible and near infrared wavelengths. , 2013, Optics express.

[14]  T. Roland,et al.  Uncovering phase maps from surface plasmon resonance images: Towards a sub-wavelength resolution , 2012 .

[15]  Shaopeng Wang,et al.  Mapping single-cell-substrate interactions by surface plasmon resonance microscopy. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[16]  M. Somekh,et al.  Surface plasmon microscopy: resolution, sensitivity and crosstalk , 2012, Journal of microscopy.

[17]  Suejit Pechprasarn,et al.  Confocal surface plasmon microscopy with pupil function engineering. , 2012, Optics express.

[18]  H. Kano,et al.  Scanning and non-scanning surface plasmon microscopy to observe cell adhesion sites , 2012, Biomedical optics express.

[19]  T. Roland,et al.  Amplitude and phase images of cellular structures with a scanning surface plasmon microscope. , 2011, Optics express.

[20]  G. Popescu Quantitative Phase Imaging of Cells and Tissues , 2011 .

[21]  M. Denyer,et al.  Imaging via widefield surface plasmon resonance microscope for studying bone cell interactions with micropatterned ECM proteins , 2011, Journal of microscopy.

[22]  Peter Wiktor,et al.  Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy. , 2011, Nature chemistry.

[23]  T. Roland,et al.  Scanning surface plasmon imaging of nanoparticles , 2010 .

[24]  Françoise Argoul,et al.  High resolution surface plasmon microscopy for cell imaging , 2010, Photonics Europe.

[25]  Françoise Argoul,et al.  Modeling of the scanning surface plasmon microscope. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  A. Arneodo,et al.  Revisiting the physical processes of vapodeposited thin gold films on chemically modified glass by atomic force and surface plasmon microscopies , 2009 .

[27]  M. Somekh,et al.  Wide-field high-resolution surface-plasmon interference microscopy. , 2009, Optics letters.

[28]  N. Hugo,et al.  Advances in surface plasmon resonance-based high throughput biochips , 2009 .

[29]  Bruce Z Gao,et al.  Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams. , 2008, Optics express.

[30]  G. Dunn,et al.  Quantifying cell–matrix adhesion dynamics in living cells using interference reflection microscopy , 2008, Journal of microscopy.

[31]  S. Britland,et al.  Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy. , 2008, Journal of structural biology.

[32]  Françoise Argoul,et al.  Surface plasmon resonance characterization of thermally evaporated thin gold films , 2007 .

[33]  A. Arneodo,et al.  Chromosome territories have a highly nonspherical morphology and nonrandom positioning , 2007, Chromosome Research.

[34]  Sanjun Zhang,et al.  High-resolution surface-plasmon imaging in air and in water: V(z) curve and operating conditions. , 2007, Optics letters.

[35]  J. Elezgaray,et al.  Topography reconstruction from surface plasmon resonance data. , 2005 .

[36]  Jing Zhang,et al.  Wide-field surface plasmon microscopy with solid immersion excitation , 2004 .

[37]  P. Ferri,et al.  C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization. , 2004, European journal of histochemistry : EJH.

[38]  M. Somekh,et al.  High‐resolution wide‐field surface plasmon microscopy , 2004, Journal of microscopy.

[39]  J. Homola Present and future of surface plasmon resonance biosensors , 2003, Analytical and bioanalytical chemistry.

[40]  M. Somekh Surface plasmon fluorescence microscopy: an analysis , 2002, Journal of microscopy.

[41]  Matt Clark,et al.  Non-contact acoustic microscopy , 2000 .

[42]  M G Somekh,et al.  High-resolution scanning surface-plasmon microscopy. , 2000, Applied optics.

[43]  Petr I. Nikitin,et al.  Surface plasmon resonance interferometry for micro-array biosensing , 2000 .

[44]  H. Kano,et al.  A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe , 2000 .

[45]  M. Somekh,et al.  Optical V(z) for high-resolution 2pi surface plasmon microscopy. , 2000, Optics letters.

[46]  S. Lipson,et al.  Surface plasmon resonance phase imaging , 2000 .

[47]  Petr I. Nikitin,et al.  Dark-field surface plasmon resonance microscopy , 2000 .

[48]  Hiroshi Kano,et al.  Excitation of Surface Plasmon Polaritons by a Focused Laser Beam , 1998 .

[49]  A. Arneodo,et al.  Dynamical characterization of electroless deposition in the diffusion-limited regime , 1997 .

[50]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[51]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Burke,et al.  Surface-polariton-like waves guided by thin, lossy metal films. , 1986, Physical review. B, Condensed matter.

[53]  H. Verschueren,et al.  Interference reflection microscopy in cell biology: methodology and applications. , 1985, Journal of cell science.

[54]  Michael G. Somekh,et al.  Acoustic microscopy of elastic discontinuities , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[55]  D. Axelrod Cell-substrate contacts illuminated by total internal reflection fluorescence , 1981, The Journal of cell biology.

[56]  Abdullah Atalar,et al.  A physical model for acoustic signatures , 1979 .

[57]  Abdullah Atalar,et al.  An angular‐spectrum approach to contrast in reflection acoustic microscopy , 1978 .

[58]  E. Kretschmann,et al.  Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light , 1968 .

[59]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .

[60]  A. S. G. Curtis,et al.  THE MECHANISM OF ADHESION OF CELLS TO GLASS , 1964, The Journal of cell biology.

[61]  Ambrose Ej A surface contact microscope for the study of cell movements. , 1956 .

[62]  L. Berguiga,et al.  Plasmon-based tomographic microscopy. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[63]  S. Lipson,et al.  High-resolution surface-plasmon resonance real-time imaging. , 2009, Optics letters.

[64]  R. Corn,et al.  Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. , 2001, Analytical chemistry.

[65]  E. J. Ambrose A Surface Contact Microscope for the study of Cell Movements , 1956, Nature.