A prospect theory based approach to multiple attribute decision making considering the decision maker's attitudinal character

[1]  Adil Baykasoğlu,et al.  A fuzzy multiple-attribute decision making model to evaluate new product pricing strategies , 2015, Annals of Operations Research.

[2]  Colin Camerer Bounded Rationality in Individual Decision Making , 1998 .

[3]  Zeshui Xu,et al.  Intuitionistic Fuzzy Aggregation Operators , 2007, IEEE Transactions on Fuzzy Systems.

[4]  Simon French,et al.  Multi-criteria decision support and evaluation of strategies for nuclear remediation management , 2009 .

[5]  Jian-Bo Yang,et al.  The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees , 2006, Eur. J. Oper. Res..

[6]  Xin Zhang,et al.  Research on the multi-attribute decision-making under risk with interval probability based on prospect theory and the uncertain linguistic variables , 2011, Knowl. Based Syst..

[7]  Bing Huang,et al.  Information granulation and uncertainty measures in interval-valued intuitionistic fuzzy information systems , 2013, Eur. J. Oper. Res..

[8]  Shu-Ping Wan,et al.  Interval-valued intuitionistic fuzzy mathematical programming method for hybrid multi-criteria group decision making with interval-valued intuitionistic fuzzy truth degrees , 2015, Inf. Fusion.

[9]  Cengiz Kahraman,et al.  Fuzzy Multicriteria Decision-Making: A Literature Review , 2015, Int. J. Comput. Intell. Syst..

[10]  Ying Luo,et al.  Two new models for determining OWA operator weights , 2007, Comput. Ind. Eng..

[11]  Ying-Ming Wang,et al.  A minimax disparity approach for obtaining OWA operator weights , 2005, Inf. Sci..

[12]  Ronald R. Yager,et al.  OWA aggregation over a continuous interval argument with applications to decision making , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  Yucheng Dong,et al.  Consensus building in multiperson decision making with heterogeneous preference representation structures: A perspective based on prospect theory , 2015, Appl. Soft Comput..

[14]  Yujia Liu,et al.  An approach for multiple attribute group decision making problems with interval-valued intuitionistic trapezoidal fuzzy numbers , 2013, Comput. Ind. Eng..

[15]  Ying-Ming Wang,et al.  A prospect theory-based interval dynamic reference point method for emergency decision making , 2015, Expert Syst. Appl..

[16]  Yan Shi,et al.  Optimizing the intermodal transportation of emergency medical supplies using balanced fuzzy clustering , 2016 .

[17]  Soung Hie Kim,et al.  Interactive group decision making procedure under incomplete information , 1999, Eur. J. Oper. Res..

[18]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[19]  Zhongsheng Hua,et al.  On the extent analysis method for fuzzy AHP and its applications , 2008, Eur. J. Oper. Res..

[20]  Junhua Hu,et al.  Dynamic stochastic multi-criteria decision making method based on cumulative prospect theory and set pair analysis , 2011 .

[21]  A. Tversky,et al.  Prospect Theory : An Analysis of Decision under Risk Author ( s ) : , 2007 .

[22]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[23]  Alfons Oude Lansink,et al.  A multiple criteria decision making approach to manure management systems in the Netherlands , 2014, Eur. J. Oper. Res..

[24]  Zhou-Jing Wang,et al.  An interval-valued intuitionistic fuzzy multiattribute group decision making framework with incomplete preference over alternatives , 2012, Expert Syst. Appl..

[25]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[26]  Renato A. Krohling,et al.  Combining prospect theory and fuzzy numbers to multi-criteria decision making , 2012, Expert Syst. Appl..

[27]  W.-L. Gau,et al.  Vague sets , 1993, IEEE Trans. Syst. Man Cybern..

[28]  A. Tversky,et al.  Prospect theory: analysis of decision under risk , 1979 .

[29]  Ian N. Durbach,et al.  Modeling uncertainty in multi-criteria decision analysis , 2012, Eur. J. Oper. Res..

[30]  Xiao Zhang,et al.  Multiple attribute decision making considering aspiration-levels: A method based on prospect theory , 2013, Comput. Ind. Eng..

[31]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[32]  Hong-yu Zhang,et al.  Interval-valued intuitionistic fuzzy multi-criteria decision-making approach based on prospect score function , 2012, Knowl. Based Syst..

[33]  Shyi-Ming Chen,et al.  Multicriteria linguistic decision making based on hesitant fuzzy linguistic term sets and the aggregation of fuzzy sets , 2014, Inf. Sci..

[34]  Lotfi A. Zadeh,et al.  A Theory of Approximate Reasoning , 1979 .

[35]  Z. S. Xu,et al.  An overview of operators for aggregating information , 2003, Int. J. Intell. Syst..

[36]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[37]  Xinwang Liu On the methods of decision making under uncertainty with probability information , 2004, International Journal of Intelligent Systems.

[38]  Dag Eirik Nordgård,et al.  Integrating risk analysis and multi-criteria decision support under uncertainty in electricity distribution system asset management , 2011, Reliab. Eng. Syst. Saf..

[39]  Alfonso Mateos,et al.  A Multi-Attribute Decision Support System for selecting intervention strategies for radionuclide contaminated freshwater ecosystems , 2006 .

[40]  K. Atanassov,et al.  Interval-Valued Intuitionistic Fuzzy Sets , 2019, Studies in Fuzziness and Soft Computing.

[41]  Gary Charness,et al.  Expressed Preferences and Behavior in Experimental Games , 2004 .

[42]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[43]  Theodor J. Stewart,et al.  Multiple Criteria Decision Analysis , 2001 .

[44]  Huayou Chen,et al.  Intuitionistic fuzzy geometric interaction averaging operators and their application to multi-criteria decision making , 2014, Inf. Sci..

[45]  K. S. Park,et al.  Mathematical programming models for characterizing dominance and potential optimality when multicriteria alternative values and weights are simultaneously incomplete , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[46]  Francisco Chiclana,et al.  A risk attitudinal ranking method for interval-valued intuitionistic fuzzy numbers based on novel attitudinal expected score and accuracy functions , 2014, Appl. Soft Comput..

[47]  Sen Liu,et al.  Decision making for the selection of cloud vendor: An improved approach under group decision-making with integrated weights and objective/subjective attributes , 2016, Expert Syst. Appl..

[48]  Sanjay Kumar,et al.  Interval-valued intuitionistic hesitant fuzzy Choquet integral based TOPSIS method for multi-criteria group decision making , 2016, Eur. J. Oper. Res..

[49]  Ching-Lai Hwang,et al.  Multiple Attribute Decision Making: Methods and Applications - A State-of-the-Art Survey , 1981, Lecture Notes in Economics and Mathematical Systems.

[50]  Peng Shi,et al.  Relief supplies allocation and optimization by interval and fuzzy number approaches , 2015, Inf. Sci..

[51]  Jian-qiang Wang,et al.  Multi-criteria semantic dominance: A linguistic decision aiding technique based on incomplete preference information , 2013, Eur. J. Oper. Res..

[52]  Ching-Lai Hwang,et al.  Fuzzy Multiple Attribute Decision Making - Methods and Applications , 1992, Lecture Notes in Economics and Mathematical Systems.