Cart3D Simulations for the Second AIAA Sonic Boom Prediction Workshop

Simulation results are presented for all test cases prescribed in the Second AIAA Sonic Boom Prediction Workshop. An inviscid, embedded-boundary Cartesian-mesh flow solver is used to compute “boom ...

[1]  Michael A. Park,et al.  Summary and Statistical Analysis of the First AIAA Sonic Boom Prediction Workshop , 2016 .

[2]  Michael J. Pratt,et al.  Introduction to ISO 10303 - the STEP Standard for Product Data Exchange. pp , 2001, J. Comput. Inf. Sci. Eng..

[3]  Michael A. Park,et al.  Nearfield Summary and Statistical Analysis of the Second AIAA Sonic Boom Prediction Workshop , 2017, Journal of Aircraft.

[4]  Atsushi Ueno,et al.  Multi-fidelity low-boom design based on near-field pressure signature , 2016 .

[5]  Sriram K. Rallabhandi,et al.  Advanced Sonic Boom Prediction Using the Augmented Burgers Equation , 2011 .

[6]  P. Roache Verification of Codes and Calculations , 1998 .

[7]  Richard L. Campbell,et al.  Summary of the 2008 NASA Fundamental Aeronautics Program Sonic Boom Prediction Workshop , 2014 .

[8]  M. Berger,et al.  Robust and efficient Cartesian mesh generation for component-based geometry , 1998 .

[9]  Michael J. Aftosmis,et al.  Toward Automatic Verification of Goal-Oriented Flow Simulations , 2014 .

[10]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[11]  Melissa B. Carter,et al.  USM3D Simulations for Second Sonic Boom Workshop , 2017, Journal of Aircraft.

[12]  Mathias Wintzer,et al.  Adjoint-based adaptive mesh refinement for sonic boom prediction , 2008 .

[13]  S. S. Stevens Perceived Level of Noise by Mark VII and Decibels (E) , 1972 .

[14]  Michael J. Aftosmis,et al.  Adjoint-Based Low-Boom Design with Cart3D , 2011 .

[15]  Harvard Lomax,et al.  The wave drag of arbitrary configurations in linearized flow as determined by areas and forces in oblique planes , 1955 .

[16]  James E. Murray,et al.  Airborne Shaped Sonic Boom Demonstration Pressure Measurements with Computational Fluid Dynamics Comparisons , 2005 .

[17]  Mathias Wintzer,et al.  Under-Track CFD-Based Shape Optimization for a Low-Boom Demonstrator Concept , 2015 .

[18]  Gediminas Adomavicius,et al.  A Parallel Multilevel Method for Adaptively Refined Cartesian Grids with Embedded Boundaries , 2000 .

[19]  Michael J. Aftosmis,et al.  Cart3D Simulations for the First AIAA Sonic Boom Prediction Workshop , 2014 .

[20]  Jean-Marc Moschetta,et al.  The sonic point glitch problem: A numerical solution , 1998 .

[21]  T. Pulliam,et al.  Adjoint Formulation for an Embedded-Boundary Cartesian Method , 2005 .

[22]  M Sullivan Brenda,et al.  A Loudness Calculation Procedure Applied to Shaped Sonic Booms , 2003 .

[23]  Michael J. Aftosmis,et al.  Adjoint-based low-boom design with Cart3D (Invited) , 2011 .

[24]  Frédéric Alauzet,et al.  Comparing Anisotropic Adaptive Strategies on the Second AIAA Sonic Boom Workshop Geometry , 2019, Journal of Aircraft.

[25]  Scott M. Murman,et al.  Performance of a new CFD flow solver using a hybrid programming paradigm , 2005, J. Parallel Distributed Comput..