Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis

[1]  J. Friml,et al.  Polar auxin transport – old questions and new concepts? , 2002, Plant Molecular Biology.

[2]  J. Guern,et al.  Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells , 1996, Planta.

[3]  A. Sheldrake,et al.  Carrier-mediated auxin transport , 1974, Planta.

[4]  J. Friml,et al.  Automated whole mount localisation techniques for plant seedlings. , 2003, The Plant journal : for cell and molecular biology.

[5]  M. Evans,et al.  Gravity-regulated differential auxin transport from columella to lateral root cap cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Friml,et al.  Auxin transport - shaping the plant. , 2003, Current opinion in plant biology.

[7]  A. Nakano,et al.  The Arabidopsis GNOM ARF-GEF Mediates Endosomal Recycling, Auxin Transport, and Auxin-Dependent Plant Growth , 2003, Cell.

[8]  Bruce Bowerman,et al.  Heads or tails: cell polarity and axis formation in the early Caenorhabditis elegans embryo. , 2002, Developmental cell.

[9]  G. Jürgens,et al.  The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. , 2002, Genes & development.

[10]  Klaus Palme,et al.  AtPIN4 Mediates Sink-Driven Auxin Gradients and Root Patterning in Arabidopsis , 2002, Cell.

[11]  Klaus Palme,et al.  Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis , 2002, Nature.

[12]  T. J. Cooke,et al.  An auxin surge following fertilization in carrots: a mechanism for regulating plant totipotency , 2002, Planta.

[13]  U. Grossniklaus,et al.  Seed development (Communication arising): Early paternal gene activity in Arabidopsis , 2001, Nature.

[14]  Tetsuya Tabata,et al.  Genetics of morphogen gradients , 2001, Nature Reviews Genetics.

[15]  G. Jürgens Apical–basal pattern formation in Arabidopsis embryogenesis , 2001, The EMBO journal.

[16]  A. Teleman,et al.  Shaping Morphogen Gradients , 2001, Cell.

[17]  B. Sundberg,et al.  Auxin distribution and transport during embryonic pattern formation in wheat. , 2001, The Plant journal : for cell and molecular biology.

[18]  M. Roussel,et al.  Disruption of the ARF transcriptional activator DMP1 facilitates cell immortalization, Ras transformation, and tumorigenesis. , 2000, Genes & development.

[19]  G. Muday,et al.  Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. , 2000, Plant physiology.

[20]  Ottoline Leyser,et al.  An Auxin-Dependent Distal Organizer of Pattern and Polarity in the Arabidopsis Root , 1999, Cell.

[21]  G. Jürgens,et al.  Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. , 1999, Science.

[22]  G. Jürgens,et al.  The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. , 1999, Development.

[23]  E. Moctezuma Changes in auxin patterns in developing gynophores of the peanut plant (Arachis hypogaea L.). , 1999, Annals of botany.

[24]  J. Haseloff,et al.  GFP variants for multispectral imaging of living cells. , 1999, Methods in cell biology.

[25]  A. Müller,et al.  Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. , 1998, Science.

[26]  C. Hardtke,et al.  The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development , 1998, The EMBO journal.

[27]  G. Neuhaus,et al.  Auxin-induced developmental patterns in Brassica juncea embryos. , 1998, Development.

[28]  G. Hagen,et al.  Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. , 1997, The Plant cell.

[29]  J. Braselton,et al.  Feulgen staining of intact plant tissues for confocal microscopy. , 1996, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[30]  Jonathan D. G. Jones,et al.  Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. , 1995, Genes & development.

[31]  P. J. Davies Plant hormones : physiology, biochemistry and molecular biology , 1995 .

[32]  N. Chua,et al.  Auxin Polar Transport Is Essential for the Establishment of Bilateral Symmetry during Early Plant Embryogenesis. , 1993, The Plant cell.

[33]  G. Jürgens,et al.  Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene , 1993 .

[34]  C. Nüsslein-Volhard,et al.  The origin of pattern and polarity in the Drosophila embryo , 1992, Cell.

[35]  T. Berleth,et al.  Mutations affecting body organization in the Arabidopsis embryo , 1991, Nature.

[36]  C. Bell,et al.  Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. , 1991, The Plant cell.

[37]  D. Dennis,et al.  Plant Physiology, Biochemistry and Molecular Biology , 1990 .

[38]  E. Mekada,et al.  One molecule of diphtheria toxin fragment a introduced into a cell can kill the cell , 1978, Cell.

[39]  John A. Raven,et al.  TRANSPORT OF INDOLEACETIC ACID IN PLANT CELLS IN RELATION TO pH AND ELECTRICAL POTENTIAL GRADIENTS, AND ITS SIGNIFICANCE FOR POLAR IAA TRANSPORT , 1975 .

[40]  T. Steeves,et al.  Patterns in plant development: Subject index , 1972 .