A hierarchical, retinotopic proto-organization of the primate visual system at birth

The adult primate visual system comprises a series of hierarchically organized areas. Each cortical area contains a topographic map of visual space, with different areas extracting different kinds of information from the retinal input. Here we asked to what extent the newborn visual system resembles the adult organization. We find that hierarchical, topographic organization is present at birth and therefore constitutes a proto-organization for the entire primate visual system. Even within inferior temporal cortex, this proto-organization was already present, prior to the emergence of category selectivity (e.g., faces or scenes). We propose that this topographic organization provides the scaffolding for the subsequent development of visual cortex that commences at the onset of visual experience DOI: http://dx.doi.org/10.7554/eLife.26196.001

[1]  Margaret S Livingstone,et al.  Retinotopic Organization of Scene Areas in Macaque Inferior Temporal Cortex , 2017, The Journal of Neuroscience.

[2]  Justin L. Vincent,et al.  Development of the macaque face-patch system , 2017, Nature Communications.

[3]  Till S. Hartmann,et al.  End-Stopping Predicts Curvature Tuning along the Ventral Stream , 2017, The Journal of Neuroscience.

[4]  M. Pinsk,et al.  The Anatomical and Functional Organization of the Human Visual Pulvinar , 2015, The Journal of Neuroscience.

[5]  Omar H. Butt,et al.  Hierarchical and homotopic correlations of spontaneous neural activity within the visual cortex of the sighted and blind , 2015, Front. Hum. Neurosci..

[6]  Wim Vanduffel,et al.  Retinotopy versus Face Selectivity in Macaque Visual Cortex , 2014, Journal of Cognitive Neuroscience.

[7]  Justin L. Vincent,et al.  Novel domain formation reveals proto-architecture in inferotemporal cortex , 2014, Nature Neuroscience.

[8]  Leslie G. Ungerleider,et al.  Curvature-processing network in macaque visual cortex , 2014, Proceedings of the National Academy of Sciences.

[9]  Ivo D. Popivanov,et al.  Probabilistic and Single-Subject Retinotopic Maps Reveal the Topographic Organization of Face Patches in the Macaque Cortex , 2014, The Journal of Neuroscience.

[10]  Alessandro Farnè,et al.  The helmet head restraint system: A viable solution for resting state fMRI in awake monkeys , 2014, NeuroImage.

[11]  J. Movshon,et al.  Neural limitations on visual development in primates: Beyond striate cortex , 2014 .

[12]  Bevil R. Conway,et al.  Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex , 2013, Nature Neuroscience.

[13]  Xueqi Cheng,et al.  A Network for Scene Processing in the Macaque Temporal Lobe , 2013, Neuron.

[14]  Philip G. F. Browning,et al.  Causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys , 2013, Proceedings of the National Academy of Sciences.

[15]  Roger B. H. Tootell,et al.  A curvature-processing network in macaque visual cortex , 2013 .

[16]  Kerstin E. Schmidt,et al.  The Visual Callosal Connection: A Connection Like Any Other? , 2013, Neural plasticity.

[17]  Earl L. Smith,et al.  Receptive-Field Subfields of V2 Neurons in Macaque Monkeys Are Adult-Like Near Birth , 2013, The Journal of Neuroscience.

[18]  S. Linnarsson,et al.  Positional differences of axon growth rates between sensory neurons encoded by runx3 , 2012, The EMBO journal.

[19]  Richard C. Reynolds,et al.  SUMA , 2012, NeuroImage.

[20]  Peter M. Kaskan,et al.  Cortical and subcortical connections of V1 and V2 in early postnatal macaque monkeys , 2012, The Journal of comparative neurology.

[21]  M. Livingstone,et al.  Behavioral and Anatomical Consequences of Early versus Late Symbol Training in Macaques , 2012, Neuron.

[22]  Leslie G. Ungerleider,et al.  Scene-Selective Cortical Regions in Human and Nonhuman Primates , 2011, The Journal of Neuroscience.

[23]  Joseph S. Gati,et al.  Resting-state networks in the macaque at 7T , 2011, NeuroImage.

[24]  Jakob Heinzle,et al.  Topographically specific functional connectivity between visual field maps in the human brain , 2011, NeuroImage.

[25]  M. Pinsk,et al.  Visuotopic Organization of Macaque Posterior Parietal Cortex: A Functional Magnetic Resonance Imaging Study , 2011, The Journal of Neuroscience.

[26]  Nikola T. Markov,et al.  Weight Consistency Specifies Regularities of Macaque Cortical Networks , 2010, Cerebral cortex.

[27]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[28]  James W. Tanaka,et al.  The SHINE toolbox for controlling low-level image properties , 2010 .

[29]  W. Vanduffel,et al.  Visual Field Map Clusters in Macaque Extrastriate Visual Cortex , 2009, The Journal of Neuroscience.

[30]  Doris Y. Tsao,et al.  Functional Connectivity of the Macaque Brain across Stimulus and Arousal States , 2009, The Journal of Neuroscience.

[31]  C. Gross,et al.  Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. , 2009, Journal of neurophysiology.

[32]  Leslie G. Ungerleider,et al.  Object representations in the temporal cortex of monkeys and humans as revealed by functional magnetic resonance imaging. , 2009, Journal of neurophysiology.

[33]  Danelle A. Wilbraham,et al.  Can low level image differences account for the ability of human observers to discriminate facial identity? , 2008, Journal of vision.

[34]  A. Hyvärinen,et al.  Spatial frequency tuning in human retinotopic visual areas. , 2008, Journal of vision.

[35]  N. Kanwisher,et al.  A stable topography of selectivity for unfamiliar shape classes in monkey inferior temporal cortex. , 2008, Cerebral cortex.

[36]  Biyu J. He,et al.  Loss of Resting Interhemispheric Functional Connectivity after Complete Section of the Corpus Callosum , 2008, The Journal of Neuroscience.

[37]  J. Morton,et al.  Developmental Neurocognition: Speech and Face Processing in the First Year of Life , 2008 .

[38]  N. Logothetis,et al.  Spatial Specificity of BOLD versus Cerebral Blood Volume fMRI for Mapping Cortical Organization , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[39]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[40]  Marcello G P Rosa,et al.  Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT). , 2006, Cerebral cortex.

[41]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  N. Newman The Visual Neurosciences , 2005 .

[43]  D. O'Leary,et al.  Molecular gradients and development of retinotopic maps. , 2005, Annual review of neuroscience.

[44]  Bin Zhang,et al.  Delayed maturation of receptive field center/surround mechanisms in V2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Lynne Kiorpes,et al.  Neural limitations on visual development in primates , 2004 .

[46]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[47]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[48]  Nicole C Rust,et al.  A Reciprocal Relationship between Reliability and Responsiveness in Developing Visual Cortical Neurons , 2002, The Journal of Neuroscience.

[49]  M. Rosa Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution. , 2002, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[50]  Anders M. Dale,et al.  Repeated fMRI Using Iron Oxide Contrast Agent in Awake, Behaving Macaques at 3 Tesla , 2002, NeuroImage.

[51]  Henry Kennedy,et al.  Early specification of the hierarchical organization of visual cortical areas in the macaque monkey. , 2002, Cerebral cortex.

[52]  Talma Hendler,et al.  Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas , 2002, Neuron.

[53]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[54]  Talma Hendler,et al.  Center–periphery organization of human object areas , 2001, Nature Neuroscience.

[55]  B. O'Brien,et al.  Organization of callosal linkages in visual area V2 of macaque monkey , 2000, The Journal of comparative neurology.

[56]  J. Kaas,et al.  Binocular cross-orientation suppression in the primary visual cortex (V1) of infant rhesus monkeys. , 2000, Investigative ophthalmology & visual science.

[57]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[58]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[59]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[60]  J. Horton,et al.  Timing of the Critical Period for Plasticity of Ocular Dominance Columns in Macaque Striate Cortex , 1997, The Journal of Neuroscience.

[61]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[62]  H. Kennedy,et al.  Role of directed growth and target selection in the formation of cortical pathways: Prenatal development of the projection of area V2 to area V4 in the monkey , 1996, The Journal of comparative neurology.

[63]  D. V. van Essen,et al.  Development of connections within and between areas V1 and V2 of macaque monkeys , 1996, The Journal of comparative neurology.

[64]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[65]  Leslie G. Ungerleider,et al.  Functional development of the corticocortical pathway for motion analysis in the macaque monkey: a 14C-2-deoxyglucose study. , 1996, Cerebral cortex.

[66]  D. Hocking,et al.  An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[68]  R. Turner,et al.  Characterizing Evoked Hemodynamics with fMRI , 1995, NeuroImage.

[69]  K. Obermayer,et al.  Organization of ocular dominance and orientation columns in the striate cortex of neonatal macaque monkeys , 1995, Visual Neuroscience.

[70]  J. Bureš,et al.  Epilepsy and the Corpus Callosum 2 , 1995, Advances in Behavioral Biology.

[71]  Jon H. Kaas,et al.  The Organization of Callosal Connections in Primates , 1995 .

[72]  C. Gross,et al.  Response properties of neurons in temporal cortical visual areas of infant monkeys. , 1993, Journal of neurophysiology.

[73]  E C Wong,et al.  Processing strategies for time‐course data sets in functional mri of the human brain , 1993, Magnetic resonance in medicine.

[74]  A. Burkhalter,et al.  Development of local circuits in human visual cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  C. Gross,et al.  Development of Brain Substrates for Pattern Recognition in Primates: Physiological and Connectional Studies of Inferior Temporal Cortex in Infant Monkeys , 1993 .

[76]  Malcolm P. Young,et al.  Objective analysis of the topological organization of the primate cortical visual system , 1992, Nature.

[77]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[78]  Henry Kennedy,et al.  Functional implications of the anatomical organization of the callosal projections of visual areas V1 and V2 in the macaque monkey , 1988, Behavioural Brain Research.

[79]  J Bullier,et al.  Callosal connectivity of areas V1 and V2 in the newborn monkey , 1986, The Journal of comparative neurology.

[80]  J Bullier,et al.  Organization of the callosal connections of visual areas v1 and v2 in the macaque monkey , 1986, The Journal of comparative neurology.

[81]  H. Killackey,et al.  Ontogenetic change in the distribution of callosal projection neurons in the postcentral gyrus of the fetal rhesus monkey , 1986, The Journal of comparative neurology.

[82]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  D. V. van Essen,et al.  The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[84]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[85]  T. Wiesel The postnatal development of the visual cortex and the influence of environment. , 1982, Bioscience reports.

[86]  D. Hubel,et al.  Ordered arrangement of orientation columns in monkeys lacking visual experience , 1974, The Journal of comparative neurology.

[87]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[88]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[89]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .