A Simple Linear Time LexBFS Cograph Recognition Algorithm

Recently lexicographic breadth first search (LexBFS) has been shown to be a very powerful tool for the development of linear time, easily implementable recognition algorithms for various families of graphs. In this paper, we add to this work by producing a simple two LexBFS sweep algorithm to recognize the family of cographs. This algorithm extends to other related graph families such as $P_4$-reducible, $P_4$-sparse, and distance hereditary. It is an open question whether our cograph recognition algorithm can be extended to a similarly easy algorithm for modular decomposition.

[1]  Michel Habib,et al.  Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations , 2008, ICALP.

[2]  Jeremy P. Spinrad,et al.  Linear-time modular decomposition and efficient transitive orientation of comparability graphs , 1994, SODA '94.

[3]  Pavol Hell,et al.  Certifying LexBFS Recognition Algorithms for Proper Interval Graphs and Proper Interval Bigraphs , 2005, SIAM J. Discret. Math..

[4]  Calvin C. Gotlieb,et al.  Semantic Clustering of Index Terms , 1968, J. ACM.

[5]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[6]  Udi Rotics,et al.  Factoring and recognition of read-once functions using cographs and normality , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[7]  Michel Habib,et al.  A simple linear time algorithm for cograph recognition , 2005, Discret. Appl. Math..

[8]  Stephan Olariu,et al.  The ultimate interval graph recognition algorithm? , 1998, SODA '98.

[9]  Jeremy P. Spinrad,et al.  Modular decomposition and transitive orientation , 1999, Discret. Math..

[10]  Michel Habib,et al.  A Simple Linear Time LexBFS Cograph Recognition Algorithm , 2003, WG.

[11]  D. West Introduction to Graph Theory , 1995 .

[12]  Ming-Tat Ko,et al.  LexBFS-Ordering in Asteroidal Triple-Free Graphs , 1999, ISAAC.

[13]  Feodor F. Dragan,et al.  LexBFS-orderings and powers of chordal graphs , 1997, Discret. Math..

[14]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[15]  Rolf H. Möhring,et al.  An Incremental Linear-Time Algorithm for Recognizing Interval Graphs , 1989, SIAM J. Comput..

[16]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[17]  Udi Rotics,et al.  Factoring and recognition of read-once functions using cographs and normality and the readability of functions associated with partial k-trees , 2006, Discret. Appl. Math..

[18]  Derek G. Corneil,et al.  A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs , 2004, Discret. Appl. Math..

[19]  Derek G. Corneil,et al.  A Unified View of Graph Searching , 2008, SIAM J. Discret. Math..

[20]  Elias Dahlhaus,et al.  Efficient Parallel Recognition Algorithms of Cographs and Distance Hereditary Graphs , 1995, Discret. Appl. Math..

[21]  Lorna Stewart,et al.  A Linear Recognition Algorithm for Cographs , 1985, SIAM J. Comput..

[22]  Stephan Olariu,et al.  P-Components and the Homogeneous Decomposition of Graphs , 1995, SIAM J. Discret. Math..

[23]  Derek G. Corneil,et al.  Lexicographic Breadth First Search - A Survey , 2004, WG.

[24]  Laurent Viennot,et al.  Partition Refinement Techniques: An Interesting Algorithmic Tool Kit , 1999, Int. J. Found. Comput. Sci..

[25]  Jens Gustedt,et al.  Efficient and practical modular decomposition , 1997, SODA '97.

[26]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[27]  Stephan Olariu,et al.  The Ultimate Interval Graph Recognition Algorithm? (Extended Abstract). , 1998, ACM-SIAM Symposium on Discrete Algorithms.

[28]  Anna Bretscher Lexbfs based recognition algorithms for cographs and related families , 2005 .

[29]  Michel Habib,et al.  A New Linear Algorithm for Modular Decomposition , 1994, CAAP.

[30]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..