Comparison of Molecular Simulation and Pseudo-Rigid-Body Model Predictions for a Carbon Nanotube–Based Compliant Parallel-Guiding Mechanism

We report on the accuracy of the pseudo-rigid-body model (PRBM) in predicting the behavior of a nanoscale parallel-guiding mechanism (nPGM) that uses two single-walled (5,5) carbon nanotubes (CNTs) as the flexural guiding elements. The nPGM has two regions of behavior: region I is governed by the bulk deformation of the nanotubes, and region 2 is characterized by hingelike flexing of four "kinks" that occur due to buckling of the nanotube walls. PRBM parameters for (5,5) CNTs are proposed. Molecular simulation results of region I behavior match PRBM predictions of (I) kinematic behavior with less than 7.3% error and (2) elastomechanic behavior with less than 5.7% error. Although region I is of more interest because of its well-defined and stable nature, region 2 motion is also investigated. We show that the PRBM parameters are dependent on the selection of the effective tube thickness and moment of inertia, the lesson being that designers must take care to consider the thickness and moment of inertia values when deriving PRBM constants.

[1]  William C. Tang,et al.  Laterally Driven Polysilicon Resonant Microstructures , 1989 .

[2]  Sridhar Kota,et al.  Strategies for systematic synthesis of compliant mems , 1994 .

[3]  A. Midha,et al.  Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms , 1995 .

[4]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[5]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[6]  Mary Frecker,et al.  Topological synthesis of compliant mechanisms using multi-criteria optimization , 1997 .

[7]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[8]  K. Méténier,et al.  Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes , 1999 .

[9]  A. Rubio,et al.  AB INITIO STRUCTURAL, ELASTIC, AND VIBRATIONAL PROPERTIES OF CARBON NANOTUBES , 1999 .

[10]  Rodney S. Ruoff,et al.  Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes , 2000 .

[11]  Zettl,et al.  Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes , 2000, Science.

[12]  Stuart T. Smith,et al.  Flexures: Elements of Elastic Mechanisms , 2000 .

[13]  Vasyl Harik,et al.  Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods , 2001 .

[14]  Riichiro Saito,et al.  Anomalous potential barrier of double-wall carbon nanotube , 2001 .

[15]  Boris I. Yakobson,et al.  C2F, BN, AND C NANOSHELL ELASTICITY FROM AB INITIO COMPUTATIONS , 2001 .

[16]  Seiji Akita,et al.  Manipulation of Nanomaterial by Carbon Nanotube Nanotweezers in Scanning Probe Microscope , 2002 .

[17]  Vasyl Harik,et al.  Mechanics of carbon nanotubes: applicability of the continuum-beam models , 2002 .

[18]  Yu. E. Lozovik,et al.  Nanomachines based on carbon nanotubes , 2003 .

[19]  A. M. Fennimore,et al.  Rotational actuators based on carbon nanotubes , 2003, Nature.

[20]  R. Superfine,et al.  Resonant oscillators with carbon-nanotube torsion springs. , 2004, Physical review letters.

[21]  Mary C. Boyce,et al.  Mechanics of deformation of single- and multi-wall carbon nanotubes , 2004 .

[22]  R. Ruoff,et al.  Atomistic Simulations of Double-Walled Carbon Nanotubes (DWCNTs) as Rotational Bearings , 2004 .

[23]  R. Batra,et al.  Macroscopic properties of carbon nanotubes from molecular-mechanics simulations , 2004 .

[24]  A. Mioduchowski,et al.  Applicability and Limitations of Simplified Elastic Shell Equations for Carbon Nanotubes , 2004 .

[25]  A. G. Nikolaev,et al.  Double-wall nanotubes: classification and barriers to walls relative rotation, sliding and screwlike motion , 2004 .

[26]  B. Bourlon,et al.  Carbon Nanotube Based Bearing for Rotational Motions , 2004 .

[27]  A. Slocum,et al.  Design of Parallel Kinematic XY Flexure Mechanisms , 2005 .

[28]  Soohyun Kim,et al.  Manufacture of a nanotweezer using a length controlled CNT arm , 2005 .

[29]  Siegmar Roth,et al.  Single-Molecule Torsional Pendulum , 2005, Science.

[30]  G. Amaratunga,et al.  Nanoelectromechanical switches with vertically aligned carbon nanotubes , 2005 .

[31]  K. Hwang,et al.  Thickness of graphene and single-wall carbon nanotubes , 2006 .

[32]  Larry L. Howell,et al.  Simulation of a carbon nanotube-based compliant parallel-guiding mechanism: A nanomechanical building block , 2006 .

[33]  Jia Lu,et al.  Analysis of localized failure of single-wall carbon nanotubes , 2006 .

[34]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[35]  M. Ahmer Wadee,et al.  Longitudinally inhomogeneous deformation patterns in isotropic tubes under pure bending , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Xi Chen,et al.  A structural mechanics study of single-walled carbon nanotubes generalized from atomistic simulation , 2006, Nanotechnology.

[37]  M. Cullinan,et al.  Difference between bending and stretching moduli of single-walled carbon nanotubes that are modeled as an elastic tube , 2007 .