Inventory, assembly and analysis of Bacillus subtilis ABC transport systems.

We have undertaken the inventory and assembly of the ATP binding cassette (ABC) transporter systems in the complete genome of Bacillus subtilis. We combined the identification of the three protein partners that compose an ABC transporter (nucleotide-binding domain, NBD; membrane spanning domain, MSD; and solute-binding protein, SBP) with constraints on the genetic organization. This strategy allowed the identification of 86 NBDs in 78 proteins, 103 MSD proteins and 37 SBPs. The analysis of transcriptional units allows the reconstruction of 59 ABC transporters, which include at least one NBD and one MSD. A particular class of five dimeric ATPases was not associated to MSD partners and is assumed to be involved either in macrolide resistance or regulation of translation elongation. In addition, we have detected five genes encoding ATPases without any gene coding for MSD protein in their neighborhood and 11 operons that encode only the membrane and solute-binding proteins. On the bases of similarities, three ATP-binding proteins are proposed to energize ten incomplete systems, suggesting that one ATPase may be recruited by more than one transporter. Finally, we estimate that the B. subtilis genome encodes for at least 78 ABC transporters that have been split in 38 importers and 40 extruders. The ABC systems have been further classified into 11 sub-families according to the tree obtained from the NBDs and the clustering of the MSDs and the SBPs. Comparisons with Escherichia coli show that the extruders are over-represented in B. subtilis, corresponding to an expansion of the sub-families of antibiotic and drug resistance systems.

[1]  J. Boch,et al.  Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline , 1994, Journal of bacteriology.

[2]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[3]  W. Saurin,et al.  Bacterial binding protein‐dependent permeases: characterization of distinctive signatures for functionally related integral cytoplasmic membrane proteins , 1994, Molecular microbiology.

[4]  M H Saier,et al.  Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. , 1998, Journal of molecular biology.

[5]  M. Sarvas,et al.  Molecular analysis of an operon in Bacillus subtilis encoding a novel ABC transporter with a role in exoprotein production, sporulation and competence. , 1996, Microbiology.

[6]  H. Pakrasi,et al.  Molecular identification of an ABC transporter complex for manganese: analysis of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process. , 1995, The EMBO journal.

[7]  K. Devine,et al.  Analysis of a ribose transport operon from Bacillus subtilis. , 1994, Microbiology.

[8]  Y. Nakamura,et al.  Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). , 1996, DNA research : an international journal for rapid publication of reports on genes and genomes.

[9]  D. Karamata,et al.  The tagGH operon of Bacillus subtilis 168 encodes a two‐component ABC transporter involved in the metabolism of two wall teichoic acids , 1995, Molecular microbiology.

[10]  D. Taglicht,et al.  Saccharomyces cerevisiae ABC proteins and their relevance to human health and disease. , 1998, Methods in enzymology.

[11]  M. Tuite,et al.  Translation elongation factor 3: a fungus‐specific translation factor? , 1993, Molecular microbiology.

[12]  M. P. Gallagher,et al.  The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation , 1991, Molecular microbiology.

[13]  M H Saier,et al.  Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria , 1993, Microbiological reviews.

[14]  D. Court,et al.  Cloning and organization of the abc and mdl genes of Escherichia coli: relationship to eukaryotic multidrug resistance. , 1993, Gene.

[15]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[16]  A. Sancar,et al.  Isolation and characterization of functional domains of UvrA. , 1991, Biochemistry.

[17]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[18]  I. Pastan,et al.  Genetic analysis of the multidrug transporter. , 1995, Annual review of genetics.

[19]  E. Bremer,et al.  Bacillus subtilis : characterization of OpuD . osmoprotectant glycine betaine operate in Three transport systems for the , 1996 .

[20]  A. Sonenshein,et al.  A Bacillus subtilis dipeptide transport system expressed early during sporulation , 1991, Molecular microbiology.

[21]  C. Masclaux,et al.  Differential expression of two siderophore‐dependent iron‐acquisition pathways in Erwinia chrysanthemi 3937: characterization of a novel ferrisiderophore permease of the ABC transporter family , 1995, Molecular microbiology.

[22]  André Goffeau,et al.  Complete inventory of the yeast ABC proteins , 1997, Nature Genetics.

[23]  J. Claverys,et al.  Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases , 1997, Molecular microbiology.

[24]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[25]  A. Bacher,et al.  Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum , 1997, Journal of bacteriology.

[26]  J. Hansen,et al.  Identification and Characterization of the Structural and Transporter Genes for, and the Chemical and Biological Properties of, Sublancin 168, a Novel Lantibiotic Produced by Bacillus subtilis 168* , 1998, The Journal of Biological Chemistry.

[27]  Y. Kobayashi,et al.  The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in regulation of the pho regulon , 1997, Journal of bacteriology.

[28]  J. Tommassen,et al.  Functional exchangeability of the ABC proteins of the periplasmic binding protein-dependent transport systems Ugp and Mal of Escherichia coli , 1993, Journal of bacteriology.

[29]  I. J. Evans,et al.  A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria , 1986, Nature.

[30]  S. Salzberg,et al.  Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi , 1997, Nature.

[31]  K. Entian,et al.  Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633 , 1994, Applied and environmental microbiology.

[32]  Michael Gribskov,et al.  Score Distributions for Simultaneous Matching to Multiple Motifs , 1997, J. Comput. Biol..

[33]  K. Linton,et al.  The Escherichia coli ATP‐binding cassette (ABC) proteins , 1998, Molecular microbiology.

[34]  Michael J. Hartshorn,et al.  Structural model of ATP-binding proteing associated with cystic fibrosis, multidrug resistance and bacterial transport , 1990, Nature.

[35]  T. A. Krulwich,et al.  A two‐gene ABC‐type transport system that extrudes Na+ in Bacillus subtilis is induced by ethanol or protonophore , 1997, Molecular microbiology.

[36]  K. Cox,et al.  Sequence similarity between macrolide-resistance determinants and ATP-binding transport proteins. , 1992, Gene.

[37]  G. Ames,et al.  Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases. , 1990, FEMS microbiology reviews.

[38]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[39]  R. Huber,et al.  The complete genome of the hyperthermophilic bacterium Aquifex aeolicus , 1998, Nature.

[40]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[41]  J. Hansen,et al.  Characterization of a chimeric proU operon in a subtilin-producing mutant of Bacillus subtilis 168 , 1995, Journal of bacteriology.

[42]  A. Bairoch,et al.  Molecular basis of symbiosis between Rhizobium and legumes , 1997, Nature.

[43]  R. Doolittle,et al.  Domainal evolution of a prokaryotic DNA repair protein and its relationship to active-transport proteins , 1986, Nature.

[44]  Heidi J. Sofia,et al.  Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes , 1993, Nucleic Acids Res..

[45]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[46]  G. Church,et al.  Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics , 1997, Journal of bacteriology.

[47]  William Noble Grundy,et al.  Meta-MEME: motif-based hidden Markov models of protein families , 1997, Comput. Appl. Biosci..

[48]  C. Higgins,et al.  A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene , 1998, Nature.

[49]  C. Higgins,et al.  ABC transporters: from microorganisms to man. , 1992, Annual review of cell biology.

[50]  N. Solh,et al.  Sequence of a staphylococcal plasmid gene, vga, encoding a putative ATP-binding protein involved in resistance to virginiamycin A-like antibiotics. , 1992, Gene.

[51]  J. D. Helmann,et al.  Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA , 1995, Nucleic Acids Res..

[52]  M. P. Gallagher,et al.  Membrane topology of the integral membrane components, OppB and OppC, of the oligopeptide permease of Salmonella typhimurium , 1992, Molecular microbiology.

[53]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[54]  G. Mehldau,et al.  A system for pattern matching applications on biosequences , 1993, Comput. Appl. Biosci..

[55]  J. Ferretti,et al.  A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. , 1992, The Journal of biological chemistry.

[56]  K. Entian,et al.  Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3 , 1995, Applied and environmental microbiology.

[57]  E. Gilson,et al.  Sequence of the malK gene in E.coli K12. , 1982, Nucleic acids research.

[58]  J. Walker,et al.  Distantly related sequences in the alpha‐ and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold. , 1982, The EMBO journal.

[59]  A. Rincé,et al.  Characterization of the lacticin 481 operon: the Lactococcus lactis genes lctF, lctE, and lctG encode a putative ABC transporter involved in bacteriocin immunity , 1997, Applied and environmental microbiology.

[60]  K. Tanimoto,et al.  Cloning and genetic and sequence analyses of the bacteriocin 21 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pPD1 , 1997, Journal of bacteriology.

[61]  E. Bremer,et al.  OpuA, an Osmotically Regulated Binding Protein-dependent Transport System for the Osmoprotectant Glycine Betaine in Bacillus subtilis(*) , 1995, The Journal of Biological Chemistry.

[62]  G. Fichant,et al.  A frameshift error detection algorithm for DNA sequencing projects. , 1995, Nucleic acids research.

[63]  Anders Liljas,et al.  2 Evolutionary and Structural Relationships among Dehydrogenases , 1975 .

[64]  G. Grandi,et al.  An operon encoding a novel ABC-type transport system in Bacillus subtilis. , 1995, Microbiology.

[65]  A. Danchin,et al.  Secretion of cyclolysin, the calmodulin‐sensitive adenylate cyclase‐haemolysin bifunctional protein of Bordetella pertussis. , 1988, The EMBO journal.

[66]  A. Driessen,et al.  Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[67]  A Danchin,et al.  SubtiList: a relational database for the Bacillus subtilis genome. , 1995, Microbiology.

[68]  S. Salzberg,et al.  Complete genome sequence of Treponema pallidum, the syphilis spirochete. , 1998, Science.

[69]  J. Beckwith,et al.  How many membrane proteins are there? , 1998, Protein science : a publication of the Protein Society.

[70]  G. F. Ames Bacterial periplasmic transport systems: structure, mechanism, and evolution. , 1986, Annual review of biochemistry.

[71]  C. Georgopoulos,et al.  Function of Escherichia coli MsbA, an Essential ABC Family Transporter, in Lipid A and Phospholipid Biosynthesis* , 1998, The Journal of Biological Chemistry.

[72]  J. Hoch,et al.  Identification of a second oligopeptide transport system in Bacillus subtilis and determination of its role in sporulation , 1994, Molecular microbiology.

[73]  R. Kolter,et al.  ABC transporters: bacterial exporters , 1993, Microbiological reviews.

[74]  F. Robb,et al.  Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. , 1998, DNA research : an international journal for rapid publication of reports on genes and genomes.

[75]  G. Ames,et al.  Bacterial periplasmic permeases belong to a family of transport proteins operating from to human: Traffic ATPases , 1990 .

[76]  R. W. Davis,et al.  Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. , 1998, Science.

[77]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[78]  R. Eichenlaub,et al.  Molecular analysis of the molybdate uptake operon, modABCD, of Escherichia coli and modR, a regulatory gene. , 1995, Microbiological research.

[79]  C. R. Vázquez de Aldana,et al.  GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF‐2 alpha kinase GCN2 in amino acid‐starved cells. , 1995, The EMBO journal.

[80]  M. P. Gallagher,et al.  Binding protein-dependent transport systems , 1990, Journal of bioenergetics and biomembranes.

[81]  C. Méndez,et al.  ABC transporters in antibiotic-producing actinomycetes. , 1998, FEMS microbiology letters.

[82]  Rajesh P. N. Rao,et al.  Characterization of a novel regulatory gene governing the expression of a polyketide synthase gene in Streptomyces ambofaciens , 1992, Molecular microbiology.

[83]  H. de Lencastre,et al.  The Bacillus subtilis L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression. , 1997, Microbiology.

[84]  D. Žgur-Bertok,et al.  Bacillus licheniformis bacitracin‐resistance ABC transporter: relationship to mammalian multidrug resistance , 1995, Molecular microbiology.

[85]  A. Böck,et al.  Genetics of a novel starch utilisation pathway present in Klebsiella oxytoca. , 1996, Journal of molecular biology.

[86]  Mark Borodovsky,et al.  The complete genome sequence of the gastric pathogen Helicobacter pylori , 1997, Nature.

[87]  K. Kashiwagi,et al.  Characteristics of the operon for a putrescine transport system that maps at 19 minutes on the Escherichia coli chromosome. , 1993, The Journal of biological chemistry.

[88]  Henry C. Wu,et al.  Lipoproteins in bacteria , 1990, Journal of bioenergetics and biomembranes.

[89]  M. Hofnung,et al.  Sequence of gene malG in E. coli K12: homologies between integral membrane components from binding protein‐dependent transport systems. , 1985, The EMBO journal.

[90]  K. Takemaru,et al.  A Bacillus subtilis gene cluster similar to the Escherichia coli phosphate-specific transport (pst) operon: evidence for a tandemly arranged pstB gene. , 1996, Microbiology.

[91]  H. Hilbert,et al.  Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. , 1996, Nucleic acids research.

[92]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[93]  K. Hantke,et al.  Iron‐hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein‐dependent transport system , 1993, Molecular microbiology.

[94]  Manolo Gouy,et al.  SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny , 1996, Comput. Appl. Biosci..