Core/Shell semiconductor nanocrystals.

Colloidal core/shell nanocrystals contain at least two semiconductor materials in an onionlike structure. The possibility to tune the basic optical properties of the core nanocrystals, for example, their fluorescence wavelength, quantum yield, and lifetime, by growing an epitaxial-type shell of another semiconductor has fueled significant progress on the chemical synthesis of these systems. In such core/shell nanocrystals, the shell provides a physical barrier between the optically active core and the surrounding medium, thus making the nanocrystals less sensitive to environmental changes, surface chemistry, and photo-oxidation. The shell further provides an efficient passivation of the surface trap states, giving rise to a strongly enhanced fluorescence quantum yield. This effect is a fundamental prerequisite for the use of nanocrystals in applications such as biological labeling and light-emitting devices, which rely on their emission properties. Focusing on recent advances, this Review discusses the fundamental properties and synthesis methods of core/shell and core/multiple shell structures of II-VI, IV-VI, and III-V semiconductors.

[1]  Liang Li,et al.  One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. , 2008, Journal of the American Chemical Society.

[2]  B. Dubertret,et al.  Towards non-blinking colloidal quantum dots. , 2008, Nature materials.

[3]  T. Nann,et al.  Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals , 2008 .

[4]  Gregory D. Scholes,et al.  Controlling the Optical Properties of Inorganic Nanoparticles , 2008 .

[5]  Liang Li,et al.  Economic Synthesis of High Quality InP Nanocrystals Using Calcium Phosphide as the Phosphorus Precursor , 2008 .

[6]  J. Vela,et al.  "Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking. , 2008, Journal of the American Chemical Society.

[7]  Darrick J. Williams,et al.  Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. , 2008, Journal of the American Chemical Society.

[8]  Sung Jun Lim,et al.  Synthesis and Characterization of Zinc-Blende CdSe-Based Core/Shell Nanocrystals and Their Luminescence in Water , 2008 .

[9]  Kookheon Char,et al.  Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients , 2008 .

[10]  David Battaglia,et al.  Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. , 2007, Journal of the American Chemical Society.

[11]  N. Sommerdijk,et al.  Highly luminescent CdTe/CdSe colloidal heteronanocrystals with temperature-dependent emission color. , 2007, Journal of the American Chemical Society.

[12]  Thomas A. Klar,et al.  Aqueous synthesis of thiol-capped CdTe nanocrystals : State-of-the-art , 2007 .

[13]  Monica Nadasan,et al.  Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. , 2007, Nano letters.

[14]  Dmitri V Talapin,et al.  Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. , 2007, Nano letters.

[15]  Christopher B. Murray,et al.  Synthesis of Colloidal PbSe/PbS Core−Shell Nanowires and PbS/Au Nanowire−Nanocrystal Heterostructures , 2007 .

[16]  S. Tretiak,et al.  Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. , 2007, Journal of the American Chemical Society.

[17]  Paul Mulvaney,et al.  Review of the Synthetic Chemistry Involved in the Production of Core/Shell Semiconductor Nanocrystals , 2007 .

[18]  Taeghwan Hyeon,et al.  Synthesis of monodisperse spherical nanocrystals. , 2007, Angewandte Chemie.

[19]  Yongfang Li,et al.  Synthesis of Type II CdTe−CdSe Nanocrystal Heterostructured Multiple-Branched Rods and Their Photovoltaic Applications , 2007 .

[20]  Benjamin R. Jarrett,et al.  Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. , 2007, Journal of the American Chemical Society.

[21]  P. Kambhampati,et al.  Light harvesting and carrier transport in core/barrier/shell semiconductor nanocrystals. , 2007 .

[22]  Myriam Protière,et al.  Highly luminescent Cd1-xZnxSe/ZnS core/shell nanocrystals emitting in the blue-green spectral range. , 2007, Small.

[23]  T. Klar,et al.  Bright White‐Light Emission from Semiconductor Nanocrystals: by Chance and by Design , 2007 .

[24]  Yang Li,et al.  Sequential Growth of Magic‐Size CdSe Nanocrystals , 2007 .

[25]  Hao Zhang,et al.  Application of Ultrasonic Irradiation in Aqueous Synthesis of Highly Fluorescent CdTe/CdS Core-Shell Nanocrystals , 2007 .

[26]  A. Alivisatos,et al.  Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis. , 2007, Journal of the American Chemical Society.

[27]  Tae Geun Kim,et al.  Ripening kinetics of CdSe/ZnSe core/shell nanocrystals , 2007 .

[28]  A. Pattantyus-Abraham,et al.  Photostability of Colloidal PbSe and PbSe/PbS Core/Shell Nanocrystals in Solution and in the Solid State , 2007 .

[29]  S. Tretiak,et al.  Effect of quantum and dielectric confinement on the exciton-exciton interaction energy in type II core/shell semiconductor nanocrystals. , 2007, Nano letters (Print).

[30]  A. Eychmüller,et al.  Multishell Semiconductor Nanocrystals , 2006 .

[31]  U. Kolb,et al.  Design and synthesis of colloidal nanocrystal heterostructures with tetrapod morphology. , 2006, Small.

[32]  Jian Xu,et al.  Synthesis and surface modification of PbSe/PbS core–shell nanocrystals for potential device applications , 2006 .

[33]  A. Q. Le Quang,et al.  Air-stable PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystal quantum dots and their applications. , 2006, The journal of physical chemistry. B.

[34]  Liberato Manna,et al.  Synthesis, properties and perspectives of hybrid nanocrystal structures. , 2006, Chemical Society reviews.

[35]  M. Bawendi,et al.  On the mechanism of lead chalcogenide nanocrystal formation. , 2006, Journal of the American Chemical Society.

[36]  Yongan Yang,et al.  Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. , 2006, Journal of the American Chemical Society.

[37]  V. Bulović,et al.  Color-saturated green-emitting QD-LEDs. , 2006, Angewandte Chemie.

[38]  Warren C. W. Chan,et al.  Quantum Dots in Biological and Biomedical Research: Recent Progress and Present Challenges , 2006 .

[39]  Y. Sung,et al.  Lattice distortion and luminescence of CdSe/ZnSe nanocrystals , 2006 .

[40]  Myriam Protière,et al.  Facile synthesis of monodisperse ZnS capped CdS nanocrystals exhibiting efficient blue emission , 2006, Nanoscale Research Letters.

[41]  Lin-Wang Wang,et al.  Electronic structure of nanocrystal quantum-dot quantum wells , 2006 .

[42]  Wenyong Lai,et al.  Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence. , 2006, The journal of physical chemistry. B.

[43]  James McBride,et al.  Structural basis for near unity quantum yield core/shell nanostructures. , 2006, Nano letters.

[44]  John V Frangioni,et al.  Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. , 2006, Journal of the American Chemical Society.

[45]  Assaf Aharoni,et al.  Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence. , 2006, Journal of the American Chemical Society.

[46]  Chun-Yen Chen,et al.  Type-II CdSe/CdTe/ZnTe (core-shell-shell) quantum dots with cascade band edges: the separation of electron (at CdSe) and hole (at ZnTe) by the CdTe layer. , 2005, Small.

[47]  X. Zhong,et al.  Synthesis, Characterization, and Spectroscopy of Type‐II Core/Shell Semiconductor Nanocrystals with ZnTe Cores , 2005 .

[48]  Subashini Asokan,et al.  The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods , 2005, Nanotechnology.

[49]  E. Jang,et al.  Interfused semiconductor nanocrystals: brilliant blue photoluminescence and electroluminescence. , 2005, Chemical communications.

[50]  T. Möller,et al.  The effect of nanocrystal surface structure on the luminescence properties: photoemission study of HF-etched InP nanocrystals. , 2005, The Journal of chemical physics.

[51]  P. Chou,et al.  Syntheses and photophysical properties of type-II CdSe/ZnTe/ZnS (core/shell/shell) quantum dots , 2005 .

[52]  Xiaogang Peng,et al.  Coupled and decoupled dual quantum systems in one semiconductor nanocrystal. , 2005, Journal of the American Chemical Society.

[53]  Ying Zhang,et al.  High-quality violet- to red-emitting ZnSe/CdSe core/shell nanocrystals , 2005 .

[54]  M. Bawendi,et al.  Engineering InAs(x)P(1-x)/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared. , 2005, Journal of the American Chemical Society.

[55]  Maya Brumer,et al.  PbSe/PbS and PbSe/PbSexS1–x Core/Shell Nanocrystals , 2005 .

[56]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[57]  Alf Mews,et al.  Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. , 2005, Journal of the American Chemical Society.

[58]  Michel Meunier,et al.  General equation for size nanocharacterization of the core-shell nanoparticles by X-ray photoelectron spectroscopy. , 2005, The journal of physical chemistry. B.

[59]  G. Seifert,et al.  A theoretical study of the structural and electronic properties of CdSe/CdS and CdS/CdSe core/shell nanoparticles , 2005 .

[60]  T. Krauss,et al.  Shell distribution on colloidal CdSe/ZnS quantum dots. , 2005, Nano letters.

[61]  J. Ripmeester,et al.  Sequential synthesis of type II colloidal CdTe/CdSe core-shell nanocrystals. , 2005, Small.

[62]  R. E. Tallman,et al.  Infrared and Raman spectroscopies of InP/II–VI core-shell nanoparticles , 2005 .

[63]  Qiang Wang,et al.  Synthesis of Extremely Small CdSe and Highly Luminescent CdSe/CdS Core–Shell Nanocrystals via a Novel Two‐Phase Thermal Approach , 2005 .

[64]  Huan‐Tsung Chang,et al.  Photoassisted synthesis of CdSe and core-shell CdSe/CdS quantum dots. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[65]  Tim Liedl,et al.  On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. , 2004, Small.

[66]  B. Satpati,et al.  Electron and phonon confinement and surface phonon modes in CdSe–CdS core–shell nanocrystals , 2004, Journal of physics. Condensed matter : an Institute of Physics journal.

[67]  Andreas Kornowski,et al.  CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals , 2004 .

[68]  Hsueh‐Shih Chen,et al.  Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS Quantum Dots Synthesized from ZnO , 2004 .

[69]  M. Abrashev,et al.  Photoluminescence depending on the ZnS shell thickness of CdS/ZnS core-shell semiconductor nanoparticles , 2004 .

[70]  Mingyuan Gao,et al.  Enhancement Effect of Illumination on the Photoluminescence of Water-Soluble CdTe Nanocrystals: Toward Highly Fluorescent CdTe/CdS Core−Shell Structure , 2004 .

[71]  S. Ivanov,et al.  Inverted Core/Shell Nanocrystals Continuously Tunable between Type-I and Type-II Localization Regimes , 2004 .

[72]  Lin-Wang Wang,et al.  Colloidal nanocrystal heterostructures with linear and branched topology , 2004, Nature.

[73]  Lin-Wang Wang,et al.  First principle study of core/shell structure quantum dots , 2004 .

[74]  V. Bulović,et al.  Blue luminescence from (CdS)ZnS core-shell nanocrystals. , 2004, Angewandte Chemie.

[75]  P. Reiss,et al.  Optical properties of core/multishell CdSe/Zn(S, Se) nanocrystals , 2004 .

[76]  P. Holloway,et al.  Efficient and Photostable ZnS‐Passivated CdS:Mn Luminescent Nanocrystals , 2004 .

[77]  Shimon Weiss,et al.  Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals. , 2004, Journal of the American Chemical Society.

[78]  Oliver Benson,et al.  Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality , 2003 .

[79]  Xiaogang Peng,et al.  Colloidal two-dimensional systems: CdSe quantum shells and wells. , 2003, Angewandte Chemie.

[80]  A. Pron,et al.  Low polydispersity core/shell nanocrystals of CdSe/ZnSe and CdSe/ZnSe/ZnS type: preparation and optical studies , 2003 .

[81]  Matthew B. Johnson,et al.  Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. , 2003, Journal of the American Chemical Society.

[82]  U. Banin,et al.  Synthesis and Properties of CdSe/ZnS Core/Shell Nanorods , 2003 .

[83]  M. Bawendi,et al.  Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. , 2003, Journal of the American Chemical Society.

[84]  Horst Weller,et al.  High resolution photoemission study of CdSe and CdSe/ZnS core-shell nanocrystals , 2003 .

[85]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[86]  Xiaobo Chen,et al.  Coherency Strain Effects on the Optical Response of Core/Shell Heteronanostructures , 2003 .

[87]  P. Reiss,et al.  Large fluorescence quantum yield and low size dispersion from CdSe/ZnSe core/shell nanocrystals , 2003 .

[88]  T. Möller,et al.  Photoemission Study of Onion Like Quantum Dot Quantum Well and Double Quantum Well Nanocrystals of CdS and HgS , 2003 .

[89]  Liberato Manna,et al.  Exciton relaxation processes in colloidal core/shell ZnSe/ZnS nanocrystals , 2003 .

[90]  A. Rogach,et al.  Etching of Colloidal InP Nanocrystals with Fluorides: Photochemical Nature of the Process Resulting in High Photoluminescence Efficiency , 2002 .

[91]  T. Stirner Interdiffusion in core-shell and quantum-dot-quantum-well nanocrystals , 2002 .

[92]  Peter Reiss,et al.  Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion , 2002 .

[93]  A. P. Alivisatos,et al.  Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. , 2002, Journal of the American Chemical Society.

[94]  L. Langof,et al.  Synthesis and characterization of PbSe and PbSe/PbS core–shell colloidal nanocrystals , 2002 .

[95]  M. A. Malik,et al.  A Simple Route to the Synthesis of Core/Shell Nanoparticles of Chalcogenides , 2002 .

[96]  T. Möller,et al.  Investigation of ZnS Passivated InP Nanocrystals by XPS , 2002 .

[97]  M. El-Sayed,et al.  Variation of the Thickness and Number of Wells in the CdS/HgS/CdS Quantum Dot Quantum Well System† , 2001 .

[98]  M. Haase,et al.  Strongly luminescent InP/ZnS core-shell nanoparticles. , 2001, ChemPhysChem.

[99]  Andreas Kornowski,et al.  Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. , 2001, Nano letters.

[100]  M. El-Sayed,et al.  Formation of quantum-dot quantum-well heteronanostructures with large lattice mismatch: ZnS/CdS/ZnS , 2001 .

[101]  P. O’Brien,et al.  Evidence for the chemical nature of capping in CdSe nanoparticles prepared by thermolysis in tri-n-octylphosphine oxide from P-edge EXAFS spectroscopy , 2001 .

[102]  A. Nozik,et al.  Core−Shell Quantum Dots of Lattice-Matched ZnCdSe2 Shells on InP Cores: Experiment and Theory , 2000 .

[103]  Uri Banin,et al.  Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores , 2000 .

[104]  Alexander Eychmüller,et al.  Structure and Photophysics of Semiconductor Nanocrystals , 2000 .

[105]  Alexander Eychmüller,et al.  Wet Chemical Synthesis of Highly Luminescent HgTe/CdS Core/Shell Nanocrystals** , 2000 .

[106]  Cao,et al.  Synthesis and Characterization of InAs/InP and InAs/CdSe Core/Shell Nanocrystals. , 1999, Angewandte Chemie.

[107]  M. A. Malik,et al.  A simple route to synthesise nanodimensional CdSe–CdS core–shell structures from single molecule precursors , 1999 .

[108]  A. Zunger,et al.  Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals , 1998 .

[109]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[110]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[111]  Arthur J. Nozik,et al.  Size-Dependent Spectroscopy of InP Quantum Dots , 1997 .

[112]  Arthur J. Nozik,et al.  Highly efficient band‐edge emission from InP quantum dots , 1996 .

[113]  Uri Banin,et al.  Synthesis of Size-Selected, Surface-Passivated InP Nanocrystals , 1996 .

[114]  K. Jensen,et al.  Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe , 1996 .

[115]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[116]  Arthur J. Nozik,et al.  SYNTHESIS AND CHARACTERIZATION OF INP QUANTUM DOTS , 1994 .

[117]  Vicki L. Colvin,et al.  X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface , 1994 .

[118]  P. Paufler,et al.  Numerical Data and Functional Relationships in Science and Technology - New Series. , 1994 .

[119]  H. Weller,et al.  Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide , 1994 .

[120]  A. Eychmüller,et al.  A quantum dot quantum well : CdS/HgS/CdS , 1993 .

[121]  Jasprit Singh,et al.  Physics of Semiconductors and Their Heterostructures , 1992 .

[122]  Horst Weller,et al.  Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles , 1987 .

[123]  Gertrud Beggerow,et al.  Numerical data and functional relationships in science and technology , 1976 .