Cuticle and cuticular wax development in the sunflower (Helianthus annuus L.) pericarp grown at the field under a moderate water deficit

La presencia de ceras en el pericarpo de girasol (Helianthus annuus L.) es un caracter morfologico que interfiere en la calidad del aceite y varia con las condiciones de manejo del cultivo. Se estudio el efecto de un deficit hidrico moderado (MWD) sobre el desarrollo del espesor de la cuticula y el contenido de las ceras cuticulares en el pericarpo de girasol de dos hibridos, desde la antesis temprana hasta la antesis tardia. El ensayo fue repetido durante dos anos consecutivos (Experimentos I y II, respectivamente). En ambos experimentos, a la madurez de cosecha (HM), las plantas que crecieron bajo MWD presentaron mayor contenido de ceras cuticulares (31-47%) y mayor espesor de cuticula (13%) respecto de las plantas control. Los cristales de ceras epicuticulares presentaron morfologia granular. Asimismo se observo sobre la superficie del pericarpo, un gradiente decreciente en la acumulacion de ceras epicuticulares en sentido basipeto del fruto. Se determino una reduccion de ceras cuticulares (CW) del 29% (mg CW/g pericarpo) en el fruto desde el estadio reproductivo R6 (flores liguladas no turgentes) hasta la HM (11% de contenido de humedad en el fruto) en el Experimento I, y del 11% desde R6 a R9 (madurez fisiologica) en el Experimento II. Esta reduccion fue atribuida al efecto erosivo ocasionado por las particulas transportadas por el viento y la lluvia durante la maduracion del fruto. Estos resultados muestran de que forma los mecanismos internos y las variables externas pueden regular el contenido de ceras en el pericarpo, y como la deshidratacion del fruto afecta la calidad y cantidad de ceras desde la fertilizacion hasta la madurez

[1]  L. Zorić,et al.  Histological characteristics of sugar beet leaves potentially linked to drought tolerance. , 2009 .

[2]  A. Mantese,et al.  Water content dynamics of achene, pericarp and embryo in sunflower: associations with achene potential size and dry-down. , 2009 .

[3]  L. Hernández,et al.  Histological development of the sunflower fruit pericarp as affected by pre- and early post-anthesis canopy shading , 2007 .

[4]  M. Jenks,et al.  Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. , 2007, Journal of plant physiology.

[5]  R. Savin,et al.  Estimation of physiological maturity in sunflower as a function of fruit water concentration , 2007 .

[6]  J. Schönherr Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. , 2006, Journal of experimental botany.

[7]  G. Kerstiens Water transport in plant cuticles: an update. , 2006, Journal of experimental botany.

[8]  H. Ölmez,et al.  THE RELATIONSHIP BETWEEN STOMATA DENSITY AND FRUIT QUALITY OF SOME APRICOT VARIETIES GROWING IN DIFFERENT ALTITUDES IN MALATYA PROVINCE , 2006 .

[9]  M. Teece,et al.  Increased Accumulation of Cuticular Wax and Expression of Lipid Transfer Protein in Response to Periodic Drying Events in Leaves of Tree Tobacco1[W] , 2005, Plant Physiology.

[10]  R. Jetter,et al.  Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid beta-ketoacyl-CoA synthase. , 2004, Journal of experimental botany.

[11]  Richard H. Grant,et al.  Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristics , 2003 .

[12]  Young-Son Cho,et al.  Wax Deposition on the Fruit Surface of Satsuma Mandarin as Affected by Water Stress , 2003 .

[13]  J. B. Misra,et al.  Genotypic Differences and Water‐Deficit Induced Enhancement in Epicuticular Wax Load in Peanut , 2003 .

[14]  Natalia G. Izquierdo,et al.  Intercepted Solar Radiation during Seed Filling Determines Sunflower Weight per Seed and Oil Concentration , 2003 .

[15]  Barbara Lanza,et al.  Olive and olive oil quality after intensive monocone olive growing (Olea europaea L., cv. Kalamata) in different irrigation regimes , 2002 .

[16]  J. Wery,et al.  Reproductive development of white clover (Trifolium repens L.) is not impaired by a moderate water deficit that reduces vegetative growth. I. Inflorescence, floret and ovule production , 2002 .

[17]  G. Beattie,et al.  Effect of alterations in cuticular wax biosynthesis on the physicochemical properties and topography of maize leaf surfaces , 2002 .

[18]  M. Knoche,et al.  Studies on water transport through the sweet cherry fruit surface: II. Conductance of the cuticle in relation to fruit development , 2001, Planta.

[19]  W. Barthlott,et al.  Movement and regeneration of epicuticular waxes through plant cuticles , 2001, Planta.

[20]  A. Heredia,et al.  Ultrastructure of the cuticle during growth of the grape berry (Vitis vinifera L.) , 2001 .

[21]  R. Laxman,et al.  Photosynthetic and respiratory activity in sunflower (Helianthus annuus L.) bracts. , 2000 .

[22]  Steven E. Ruzin,et al.  Plant Microtechnique and Microscopy , 1999 .

[23]  Wilhelm Barthlott,et al.  Classification and terminology of plant epicuticular waxes , 1998 .

[24]  Y. Manetas,et al.  The effects of seasons, exposure, enhanced UV-B radiation, and water stress on leaf epicuticular and internal UV-B absorbing capacity of Cistus creticus: a Mediterranean field study , 1997 .

[25]  Wilhelm Barthlott,et al.  Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces , 1997 .

[26]  G. Seiler Anatomy and Morphology of Sunflower , 1997 .

[27]  E. Putt Early History of Sunflower , 1997 .

[28]  G. Kerstiens Cuticular water permeability and its physiological significance , 1996 .

[29]  D. Oosterhuis,et al.  Effect of water stress on the epicuticular wax composition and ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract, and boll , 1996 .

[30]  H. Saneoka,et al.  Leaf Water Relations, Osmotic Adjustment, Cell Membrane Stability, Epicuticular Wax Load and Growth as Affected by Increasing Water Deficits in Sorghum , 1992 .

[31]  K. Percy,et al.  Effects of simulated acid rain on epicuticular wax production, morphology, chemical composition and on cuticular membrane thickness in two clones of Sitka spruce [Picea sitchensis (Bong.) Carr.] , 1990 .

[32]  Alexander Lang,et al.  Xylem, Phloem and Transpiration Flows in Developing Apple Fruits , 1990 .

[33]  M. Arpaia,et al.  Developmental changes in ‘Valencia’ orange fruit epicuticular wax in relation to fruit position on the tree , 1989 .

[34]  W. Binder,et al.  Assessment of photosynthetic activity of nursery-grown Piceaglauca seedlings using an integrating fluorometer to monitor variable chlorophyll fluorescence , 1989 .

[35]  M. Koornneef,et al.  A Genetic and Phenotypic Description of Eceriferum (cer) Mutants in Arabidopsis thaliana , 1989 .

[36]  E. Baker,et al.  EROSION OF WAXES FROM LEAF SURFACES BY SIMULATED RAIN. , 1986, The New phytologist.

[37]  M. Añón,et al.  Crystallization of waxes during sunflowerseed oil refining , 1985 .

[38]  P. Shouse,et al.  Environmental Physiology of Sorghum. II. Epicuticular Wax Load and Cuticular Transpiration1 , 1984 .

[39]  P. Unger,et al.  Effects of planting date and irrigation on wax content of sunflower-seed oil , 1984 .

[40]  D. Layzell,et al.  Modeling C and N transport to developing soybean fruits. , 1982, Plant physiology.

[41]  A. A. Schneiter,et al.  Description of Sunflower Growth Stages 1 , 1981 .

[42]  S. Larsson,et al.  Effects of Water Stress on Cuticular Transpiration Rate and Amount and Composition of Epicuticular Wax in Seedlings of Six Oat Varieties , 1978 .

[43]  J. Weete,et al.  Lipid and Surface Wax Synthesis in Water-stressed Cotton Leaves. , 1978, Plant physiology.

[44]  B. Juniper,et al.  The cuticles of plants , 1971 .

[45]  Geoffrey Eglinton,et al.  Leaf Epicuticular Waxes , 1967, Science.

[46]  H. Barrs,et al.  A Re-Examination of the Relative Turgidity Technique for Estimating Water Deficits in Leaves , 1962 .