Dual function of thalamic low-vigilance state oscillations: rhythm-regulation and plasticity

During inattentive wakefulness and non-rapid eye movement (NREM) sleep, the neocortex and thalamus cooperatively engage in rhythmic activities that are exquisitely reflected in the electroencephalogram as distinctive rhythms spanning a range of frequencies from <1 Hz slow waves to 13 Hz alpha waves. In the thalamus, these diverse activities emerge through the interaction of cell-intrinsic mechanisms and local and long-range synaptic inputs. One crucial feature, however, unifies thalamic oscillations of different frequencies: repetitive burst firing driven by voltage-dependent Ca2+ spikes. Recent evidence reveals that thalamic Ca2+ spikes are inextricably linked to global somatodendritic Ca2+ transients and are essential for several forms of thalamic plasticity. Thus, we propose herein that alongside their rhythm-regulation function, thalamic oscillations of low-vigilance states have a plasticity function that, through modifications of synaptic strength and cellular excitability in local neuronal assemblies, can shape ongoing oscillations during inattention and NREM sleep and may potentially reconfigure thalamic networks for faithful information processing during attentive wakefulness.

[1]  Mark Turmaine,et al.  Thalamic Gap Junctions Control Local Neuronal Synchrony and Influence Macroscopic Oscillation Amplitude during EEG Alpha Rhythms , 2011, Front. Psychology.

[2]  Anita Lüthi,et al.  Sleep Spindles , 2014, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[3]  S. Hughes,et al.  The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators , 2010, Nature Neuroscience.

[4]  Michael M. Halassa,et al.  State-Dependent Architecture of Thalamic Reticular Subnetworks , 2014, Cell.

[5]  Ariel Agmon,et al.  Differential Excitation of Distally versus Proximally Targeting Cortical Interneurons by Unitary Thalamocortical Bursts , 2016, The Journal of Neuroscience.

[6]  S. Jego,et al.  Hypothalamic feed-forward inhibition of thalamocortical network controls arousal and consciousness , 2015, Nature Neuroscience.

[7]  M. Deschenes,et al.  Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. , 1985, Journal of neurophysiology.

[8]  S. Khalid,et al.  Thalamocortical Mechanisms , 2019, Pain.

[9]  Vincenzo Crunelli,et al.  Cellular Mechanisms of the Slow (<1 Hz) Oscillation in Thalamocortical Neurons In Vitro , 2002, Neuron.

[10]  Anita Lüthi,et al.  Synaptic Plasticity at Intrathalamic Connections via CaV3.3 T-type Ca2+ Channels and GluN2B-Containing NMDA Receptors , 2013, The Journal of Neuroscience.

[11]  D. Contreras,et al.  Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of rhythmic recurrent activity in neocortex , 2000, Nature Neuroscience.

[13]  M Steriade,et al.  Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  M. Steriade,et al.  Electrophysiology of a slow (0.5‐4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. , 1992, The Journal of physiology.

[15]  D. McCormick,et al.  Mechanisms of oscillatory activity in guinea‐pig nucleus reticularis thalami in vitro: a mammalian pacemaker. , 1993, The Journal of physiology.

[16]  David A. McCormick,et al.  Modulation of a pacemaker current through Ca2+-induced stimulation of cAMP production , 1999, Nature Neuroscience.

[17]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.

[18]  G. Tononi,et al.  Direct Evidence for Wake-Related Increases and Sleep-Related Decreases in Synaptic Strength in Rodent Cortex , 2010, The Journal of Neuroscience.

[19]  B. Connors,et al.  Two types of network oscillations in neocortex mediated by distinct glutamate receptor subtypes and neuronal populations. , 1996, Journal of neurophysiology.

[20]  Vincenzo Crunelli,et al.  The ‘window’ T‐type calcium current in brain dynamics of different behavioural states , 2005, The Journal of physiology.

[21]  B. Connors,et al.  Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. , 1991, Science.

[22]  W. Guido,et al.  Burst responses in thalamic relay cells of the awake behaving cat. , 1995, Journal of neurophysiology.

[23]  Ian Schofield,et al.  A Neocortical Delta Rhythm Facilitates Reciprocal Interlaminar Interactions via Nested Theta Rhythms , 2013, The Journal of Neuroscience.

[24]  S. Hughes,et al.  Activity of cortical and thalamic neurons during the slow (<1 Hz) rhythm in the mouse in vivo , 2011, Pflügers Archiv - European Journal of Physiology.

[25]  M Steriade,et al.  Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. , 1996, Journal of neurophysiology.

[26]  William M. Connelly,et al.  Variable Action Potential Backpropagation during Tonic Firing and Low-Threshold Spike Bursts in Thalamocortical But Not Thalamic Reticular Nucleus Neurons , 2017, The Journal of Neuroscience.

[27]  E. Perez-Reyes Molecular physiology of low-voltage-activated t-type calcium channels. , 2003, Physiological reviews.

[28]  F. H. Lopes da Silva,et al.  Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. , 1980, Electroencephalography and clinical neurophysiology.

[29]  Christof Koch,et al.  Theta Phase Segregation of Input-Specific Gamma Patterns in Entorhinal-Hippocampal Networks , 2014, Neuron.

[30]  S. Hughes,et al.  Neuronal Basis of the Slow (<1 Hz) Oscillation in Neurons of the Nucleus Reticularis Thalami In Vitro , 2006, The Journal of Neuroscience.

[31]  H. Moldofsky,et al.  Periodic K-alpha sleep EEG activity and periodic limb movements during sleep: comparisons of clinical features and sleep parameters. , 1996, Sleep.

[32]  S. Hughes,et al.  Thalamic Mechanisms of EEG Alpha Rhythms and Their Pathological Implications , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[33]  G. Stuart,et al.  Action Potential Backpropagation and Somato-dendritic Distribution of Ion Channels in Thalamocortical Neurons , 2000, The Journal of Neuroscience.

[34]  G. Govindaiah,et al.  Low-Threshold Ca2+ Current Amplifies Distal Dendritic Signaling in Thalamic Reticular Neurons , 2010, The Journal of Neuroscience.

[35]  Karl Deisseroth,et al.  Distinct Thalamic Reticular Cell Types Differentially Modulate Normal and Pathological Cortical Rhythms. , 2017, Cell reports.

[36]  Frank C. Hoppensteadt,et al.  Bursts as a unit of neural information: selective communication via resonance , 2003, Trends in Neurosciences.

[37]  H. DeLuca,et al.  Mechanisms and functions of vitamin D. , 2009, Nutrition reviews.

[38]  Masahiko Watanabe,et al.  T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites , 2008, Nature Neuroscience.

[39]  Javier Cudeiro,et al.  Bursting thalamic responses in awake monkey contribute to visual detection and are modulated by corticofugal feedback , 2014, Front. Behav. Neurosci..

[40]  D. McCormick,et al.  H-Current Properties of a Neuronal and Network Pacemaker , 1998, Neuron.

[41]  J. Huguenard,et al.  R U OK? the Novel Therapeutic Potential of R Channels in Epilepsy , 2012, Epilepsy currents.

[42]  Sonia Ancoli-Israel,et al.  The new sleep scoring manual - The evidence behind the rules , 2007 .

[43]  R. Llinás,et al.  Electrophysiology of mammalian thalamic neurones in vitro , 1982, Nature.

[44]  D. Contreras,et al.  Cortically-induced coherence of a thalamic-generated oscillation , 1999, Neuroscience.

[45]  L. Tremblay,et al.  Tremor‐related activity of neurons in the ‘motor’ thalamus: changes in firing rate and pattern in the MPTP vervet model of parkinsonism , 2003, The European journal of neuroscience.

[46]  Rogier Min,et al.  Non-Hebbian Long-Term Potentiation of Inhibitory Synapses in the Thalamus , 2013, The Journal of Neuroscience.

[47]  M. Min,et al.  A requirement of low-threshold calcium spike for induction of spike-timing-dependent plasticity at corticothalamic synapses on relay neurons in the ventrobasal nucleus of rat thalamus. , 2012, The Chinese journal of physiology.

[48]  M. Deschenes,et al.  Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. , 1984, Journal of neurophysiology.

[49]  A. Walker Electroencephalography, Basic Principles, Clinical Applications and Related Fields , 1982 .

[50]  I. Soltesz,et al.  Low‐frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. , 1991, The Journal of physiology.

[51]  Hee-Sup Shin,et al.  Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms , 2017, Neuron.

[52]  R. Yuste,et al.  Thalamocortical Bursts Trigger Recurrent Activity in Neocortical Networks: Layer 4 as a Frequency-Dependent Gate , 2002, The Journal of Neuroscience.

[53]  R. Guillery,et al.  Functional organization of thalamocortical relays. , 1996, Journal of neurophysiology.

[54]  M. Min,et al.  Comparison of synaptic transmission and plasticity between sensory and cortical synapses on relay neurons in the ventrobasal nucleus of the rat thalamus , 2010, The Journal of physiology.

[55]  Ralf D Wimmer,et al.  The CaV3.3 calcium channel is the major sleep spindle pacemaker in thalamus , 2011, Proceedings of the National Academy of Sciences.

[56]  R. Llinás,et al.  Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. , 1981, The Journal of physiology.

[57]  M. Steriade,et al.  Short- and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation. , 1995, Journal of neurophysiology.

[58]  A. Sik,et al.  Subcellular distribution of low‐voltage activated T‐type Ca2+ channel subunits (Cav3.1 and Cav3.3) in reticular thalamic neurons of the cat , 2010, Journal of neuroscience research.

[59]  D. Attwell,et al.  Neuroenergetics and the kinetic design of excitatory synapses , 2005, Nature Reviews Neuroscience.

[60]  G. Tononi,et al.  Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration , 2014, Neuron.

[61]  S. Hughes,et al.  Synchronized Oscillations at α and θ Frequencies in the Lateral Geniculate Nucleus , 2004, Neuron.

[62]  M. Steriade,et al.  The reticular nucleus revisited: Intrinsic and network properties of a thalamic pacemaker , 2005, Progress in Neurobiology.

[63]  N. Leresche,et al.  Dynamics of Intrinsic Dendritic Calcium Signaling during Tonic Firing of Thalamic Reticular Neurons , 2013, PloS one.

[64]  R. Malenka,et al.  NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). , 2012, Cold Spring Harbor perspectives in biology.

[65]  Maxim Bazhenov,et al.  The Impact of Cortical Deafferentation on the Neocortical Slow Oscillation , 2014, The Journal of Neuroscience.

[66]  Nucleus- and species-specific properties of the slow (<1 Hz) sleep oscillation in thalamocortical neurons , 2006, Neuroscience.

[67]  G. Buzsáki Rhythms of the brain , 2006 .

[68]  H. Swadlow,et al.  The impact of 'bursting' thalamic impulses at a neocortical synapse , 2001, Nature Neuroscience.

[69]  J. Born,et al.  The memory function of sleep , 2010, Nature Reviews Neuroscience.

[70]  Michael M. Halassa,et al.  Thalamic reticular impairment underlies attention deficit in Ptchd1Y/− mice , 2015, Nature.

[71]  R. Morison,et al.  ELECTRICAL ACTIVITY OF THE THALAMUS AND BASAL GANGLIA IN DECORTICATE CATS , 1945 .

[72]  Dmitri D. Pervouchine,et al.  Neuronal metabolism governs cortical network response state. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[73]  D. Contreras,et al.  Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. , 1996, The Journal of physiology.

[74]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  N. Leresche,et al.  Sleep Slow Wave-Related Homo and Heterosynaptic LTD of Intrathalamic GABAAergic Synapses: Involvement of T-Type Ca2+ Channels and Metabotropic Glutamate Receptors , 2015, The Journal of Neuroscience.

[76]  S. Hughes,et al.  Rhythmic dendritic Ca2+ oscillations in thalamocortical neurons during slow non‐REM sleep‐related activity in vitro , 2012, The Journal of physiology.

[77]  T. Manabe,et al.  Non-Hebbian Synaptic Plasticity Induced by Repetitive Postsynaptic Action Potentials , 2009, The Journal of Neuroscience.

[78]  Mario Rosanova,et al.  Pattern-Specific Associative Long-Term Potentiation Induced by a Sleep Spindle-Related Spike Train , 2005, The Journal of Neuroscience.

[79]  D. McCormick,et al.  Sleep and arousal: thalamocortical mechanisms. , 1997, Annual review of neuroscience.

[80]  V. Crunelli,et al.  Essential Thalamic Contribution to Slow Waves of Natural Sleep , 2013, The Journal of Neuroscience.

[81]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[82]  C. Koch,et al.  Encoding of visual information by LGN bursts. , 1999, Journal of neurophysiology.

[83]  Daniel Levenstein,et al.  Network Homeostasis and State Dynamics of Neocortical Sleep , 2016, Neuron.

[84]  M. Deschenes,et al.  The deafferented reticular thalamic nucleus generates spindle rhythmicity. , 1987, Journal of neurophysiology.

[85]  C. Schroeder,et al.  Neuronal Mechanisms and Attentional Modulation of Corticothalamic Alpha Oscillations , 2011, The Journal of Neuroscience.

[86]  Julie S Haas,et al.  A calcium‐dependent pathway underlies activity‐dependent plasticity of electrical synapses in the thalamic reticular nucleus , 2017, The Journal of physiology.

[87]  Adam Kepecs,et al.  Information encoding and computation with spikes and bursts , 2003, Network.

[88]  Hee-Sup Shin,et al.  Selective T-Type Calcium Channel Block in Thalamic Neurons Reveals Channel Redundancy and Physiological Impact of ITwindow , 2010, The Journal of Neuroscience.

[89]  S. Hughes,et al.  Synchronized oscillations at alpha and theta frequencies in the lateral geniculate nucleus. , 2004, Neuron.

[90]  A. Morel,et al.  Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients , 2000, Neuroscience.

[91]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[92]  Vincenzo Crunelli,et al.  Thalamic T-type Ca2+ channels and NREM sleep. , 2006, Cell calcium.

[93]  D. McCormick,et al.  Role of the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro. , 1995, The Journal of physiology.

[94]  J. Schiller,et al.  Active properties of neocortical pyramidal neuron dendrites. , 2013, Annual review of neuroscience.

[95]  Nicholas A. Steinmetz,et al.  Mechanisms of Sleep-Dependent Consolidation of Cortical Plasticity , 2009, Neuron.

[96]  Baltazar Zavala,et al.  Activity-Dependent Long-Term Depression of Electrical Synapses , 2011, Science.

[97]  D. Contreras,et al.  The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[98]  Gernot G. Supp,et al.  Spindle activity phase-locked to sleep slow oscillations , 2016, NeuroImage.

[99]  Vincenzo Crunelli,et al.  State-Dependent Firing Determines Intrinsic Dendritic Ca2+ Signaling in Thalamocortical Neurons , 2010, The Journal of Neuroscience.

[100]  Rafael Yuste,et al.  Persistently Active, Pacemaker-Like Neurons in Neocortex , 2007, Front. Neurosci..

[101]  Aneesha K. Suresh,et al.  Cortically coordinated NREM thalamocortical oscillations play an essential, instructive role in visual system plasticity , 2017, Proceedings of the National Academy of Sciences.

[102]  B. Connors,et al.  Two Functionally Distinct Networks of Gap Junction-Coupled Inhibitory Neurons in the Thalamic Reticular Nucleus , 2014, The Journal of Neuroscience.

[103]  A. Destexhe,et al.  Dendritic Low-Threshold Calcium Currents in Thalamic Relay Cells , 1998, The Journal of Neuroscience.

[104]  Michael M. Halassa,et al.  Thalamic Inhibition: Diverse Sources, Diverse Scales , 2016, Trends in Neurosciences.

[105]  T. Sejnowski,et al.  Control of Spatiotemporal Coherence of a Thalamic Oscillation by Corticothalamic Feedback , 1996, Science.

[106]  D. McCormick,et al.  Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. , 1995, The Journal of physiology.

[107]  F. L. D. Silva,et al.  The cortical source of the alpha rhythm , 1977, Neuroscience Letters.

[108]  William M. Connelly,et al.  The Global Spike: Conserved Dendritic Properties Enable Unique Ca2+ Spike Generation in Low-Threshold Spiking Neurons , 2015, The Journal of Neuroscience.

[109]  S. Hughes,et al.  Temporal Framing of Thalamic Relay-Mode Firing by Phasic Inhibition during the Alpha Rhythm , 2009, Neuron.

[110]  Giulio Tononi,et al.  What can neurons do for their brain? Communicate selectivity with bursts , 2013, Theory in Biosciences.

[111]  D. McCormick,et al.  Cellular mechanisms of a synchronized oscillation in the thalamus. , 1993, Science.

[112]  A. Adamantidis,et al.  Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics , 2017, Progress in Neurobiology.

[113]  Paul Tiesinga,et al.  Oscillatory mechanisms of feedforward and feedback visual processing , 2015, Trends in Neurosciences.

[114]  Igor Timofeev,et al.  Frontiers in Computational Neuroscience Modeling Thalamocortical Cell: Impact of Ca 2+ Channel Distribution and Cell Geometry on Fi Ring Pattern , 2022 .

[115]  L. Acsády The thalamic paradox , 2017, Nature Neuroscience.

[116]  M. Steriade,et al.  Cellular substrates and laminar profile of sleep K-complex , 1997, Neuroscience.

[117]  D. McCormick,et al.  Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. , 1990, The Journal of physiology.

[118]  Garrett Neske,et al.  The Slow Oscillation in Cortical and Thalamic Networks: Mechanisms and Functions , 2016, Front. Neural Circuits.

[119]  William M. Connelly,et al.  A Distinct Class of Slow (∼0.2–2 Hz) Intrinsically Bursting Layer 5 Pyramidal Neurons Determines UP/DOWN State Dynamics in the Neocortex , 2015, The Journal of Neuroscience.

[120]  G. Tononi,et al.  Sleep and synaptic homeostasis: a hypothesis , 2003, Brain Research Bulletin.