Basic physics of radiation damage production

Abstract The basic physical processes underlying the production of displacement damage in irradiated solids are briefly discussed, including topics from nuclear, atomic, and solid-state physics. Following a general introduction, the concepts of elementary cascade theory are presented as a basis for intuitive descriptions of the damage process. Then the production of primary recoils, mainly by nuclear processes, is discussed in enough detail to prepare a basis for calculating the primary-recoil energy spectra in typical irradiation facilities. The slowing down of fast atomic particles in solids is next discussed as a basis for developing atomistic models of damage production. Finally, several aspects of damage production, as revealed by atomistic simulation models, are outlined.

[1]  J. Biersack,et al.  A Monte Carlo computer program for the transport of energetic ions in amorphous targets , 1980 .

[2]  G. Vineyard,et al.  THE DYNAMICS OF RADIATION DAMAGE , 1960 .

[3]  F. Bloch,et al.  Bremsvermögen von Atomen mit mehreren Elektronen , 1933 .

[4]  M. W. Thompson Defects and Radiation Damage in Metals , 1969 .

[5]  Leonard C. Feldman,et al.  Fundamentals of Surface and Thin Film Analysis , 1986 .

[6]  J. Biersack Computer simulations of sputtering , 1987 .

[7]  W. Eckstein,et al.  Round Robin computer simulation of ejection probability in sputtering , 1989 .

[8]  J. Davies,et al.  EXPERIMENTAL EVIDENCE FOR THE INCREASE OF HEAVY ION RANGES BY CHANNELING IN CRYSTALLINE STRUCTURE , 1963 .

[9]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[10]  R. S. Nelson,et al.  The Observation of Atomic Collisions in Crystalline Solids , 1970 .

[11]  Max Born,et al.  Einstein's Theory of Relativity , 1925 .

[12]  G. Dienes,et al.  Radiation Effects in Solids , 1953 .

[13]  Mark T. Robinson,et al.  Computer studies of the reflection of light ions from solids , 1976 .

[14]  Douglas S Billington,et al.  Radiation damage in solids , 1961 .

[15]  G. T. Seaborg,et al.  Table of the Isotopes , 1948 .

[16]  Frederick Seitz,et al.  Radiation effects in solids , 1952 .

[17]  R. Ewing,et al.  The Metamict State , 1987 .

[18]  Anders E. Carlsson,et al.  Beyond Pair Potentials in Elemental Transition Metals and Semiconductors , 1990 .

[19]  A. G. Maddock Chemie Heisser Atome , 1970 .

[20]  Wolfgang Eckstein,et al.  Computer simulation of ion-solid interactions , 1991 .

[21]  Baragiola,et al.  Auger electron emission from Al induced by keV Ar bombardment: Experiments and Monte Carlo simulations. , 1987, Physical review. A, General physics.

[22]  Mark T. Robinson,et al.  Computer simulation of collision cascades in monazite , 1983 .

[23]  W. Eckstein,et al.  The Scattering Integrals: Integration and Accuracy , 1989 .

[24]  J. Brinkman On the Nature of Radiation Damage in Metals , 1954 .

[25]  M.M.R. Williams,et al.  The role of the Boltzmann transport equation in radiation damage calculations , 1979 .

[26]  T. Takagi,et al.  Computer studies of ionized cluster beam deposition , 1989 .

[27]  M. Robinson TABLES OF CLASSICAL SCATTERING INTEGRALS. , 1970 .

[28]  Marc Hou,et al.  Computer studies of low energy scattering in crystalline and amorphous targets , 1976 .

[29]  J. D. Garcia,et al.  Inner-Shell Vacancy Production in Ion-Atom Collisions , 1973 .

[30]  Mark T. Robinson,et al.  The energy spectra of atoms slowing down in structureless media , 1965 .

[31]  T. Tombrello Solar system sputtering , 1982 .

[32]  Mark T. Robinson,et al.  Computer Studies of the Slowing Down of Energetic Atoms in Crystals , 1963 .

[33]  W. S. Snyder,et al.  DISORDERING OF SOLIDS BY NEUTRON RADIATION , 1955 .

[34]  P. Sigmund ON THE NUMBER OF ATOMS DISPLACED BY IMPLANTED IONS OR ENERGETIC RECOIL ATOMS , 1969 .

[35]  D. Clary,et al.  Calculations on Ar+ sputtering of a Cu surface using an ab initio potential , 1988 .

[36]  R. S. Nelson,et al.  THE PENETRATION OF ENERGETIC IONS THROUGH THE OPEN CHANNELS IN A CRYSTAL LATTICE , 1963 .

[37]  H. Urbassek,et al.  Recoil numbers, particle densities and reaction yields in linear atomic collision cascades , 1985 .

[38]  T. Noggle,et al.  REDUCTION IN RADIATION DAMAGE DUE TO CHANNELING OF 51-Mev IODINE IONS IN GOLD , 1966 .

[39]  J. W. Humberston Classical mechanics , 1980, Nature.

[40]  Richard B. Firestone,et al.  Table of Isotopes , 1978 .

[41]  D. G. Doran,et al.  Interaction of radiation with solids and elementary defect production , 1977 .

[42]  W. S. Snyder,et al.  Number of Vacancies Created by Heavy Corpuscular Radiation , 1955 .

[43]  James A. Ibers,et al.  International tables for X-ray crystallography , 1962 .

[44]  Pedro M. Echenique,et al.  Dynamic Screening of Ions in Condensed Matter , 1990 .

[45]  K. Bruce Winterbon,et al.  Ion Implantation Range and Energy Deposition Distributions , 1975 .

[46]  R. Gordon,et al.  Theory for the Forces between Closed‐Shell Atoms and Molecules , 1972 .

[47]  J. Biersack,et al.  Sputtering studies with the Monte Carlo Program TRIM.SP , 1984 .

[48]  L. Greenwood Neutron interactions and atomic recoil spectra , 1994 .

[49]  E. Everhart,et al.  Coincidence Measurements of Large-Angle Ar + -on-Ar Collisions , 1966 .

[50]  M. Straumanis,et al.  Radiation Damage in Crystals , 1966 .

[51]  A. Pabst The metamict state , 1952 .

[52]  H. Bethe Bremsformel für Elektronen relativistischer Geschwindigkeit , 1932 .

[53]  U. Littmark Modelling of ballistic low energy ion solid interaction — conventional analytic theories versus computer simulations , 1994 .

[54]  Mitio Inokuti,et al.  Inelastic Collisions of Fast Charged Particles with Atoms and Molecules-The Bethe Theory Revisited , 1971 .

[55]  Y. Yamamura Sputtering by cluster ions , 1988 .

[56]  R. H. Silsbee,et al.  Focusing in Collision Problems in Solids , 1957 .

[57]  G. H. Vineyard,et al.  Dynamics of Radiation Damage in a Body-Centered Cubic Lattice , 1964 .

[58]  Werner Brandt,et al.  Effective stopping-power charges of swift ions in condensed matter , 1982 .

[59]  M. Robinson Computer simulation studies of high-energy collision cascades☆ , 1991 .

[60]  P Sigmund,et al.  スパッタの理論 I 非晶質のスパッタ収量と多結晶ターゲット , 1969 .

[61]  R. S. Pease,et al.  THE MECHANISM OF THE IRRADIATION DISORDERING OF ALLOYS , 1955 .

[62]  R. Sizmann,et al.  Super ranges of fast ions in copper single crystals , 1963 .

[63]  T. Noggle,et al.  Channeling effects on the energy loss of high energy (20–80 MeV) 79Br and 127I ions in gold , 1965 .

[64]  J. Ziegler,et al.  Hydrogen Stopping Powers and Ranges in All Elements , 1977 .

[65]  N. F. Sir Mott,et al.  The theory of atomic collisions , 1933 .

[66]  S. Nakagawa Molecular effect on interatomic potentials , 1990 .

[67]  R. Averback Atomic displacement processes in irradiated metals , 1994 .

[68]  Robinson Slowing-down time of energetic atoms in solids. , 1989, Physical review. B, Condensed matter.

[69]  J. Gillis,et al.  Classical dynamics of particles and systems , 1965 .

[70]  Mark T. Robinson,et al.  Computer simulation of the self‐sputtering of uranium , 1983 .

[71]  C. Klabunde,et al.  Survey of Thermal-Neutron Damage in Pure Metals , 1967 .

[72]  T. D. Rubia,et al.  Molecular dynamics computer simulations of displacement cascades in metals , 1994 .

[73]  M. Mendenhall,et al.  Algorithms for the rapid computation of classical cross sections for screened Coulomb collisions , 1991 .

[74]  Y. Yamamura,et al.  Theory of sputtering and comparison to experimental data , 1982 .

[75]  M. Robinson,et al.  A proposed method of calculating displacement dose rates , 1975 .

[76]  R S Pease,et al.  REVIEW ARTICLES: The Displacement of Atoms in Solids by Radiation , 1955 .

[77]  Robert E. Johnson Energetic Charged-Particle Interactions with Atmospheres and Surfaces , 1990 .

[78]  James F. Ziegler,et al.  Helium: Stopping Powers and Ranges in All Elemental Matter , 1977 .

[79]  H. Heinisch,et al.  On the structure of irradiation-induced collision cascades in metals as a function of recoil energy and crystal structure , 1993 .

[80]  David K. Brice,et al.  Ion Implantation Range and Energy Deposition Distributions , 1975 .

[81]  G. R. Satchler Introduction to nuclear reactions , 1980 .

[82]  M. Robinson The influence of the scattering law on the radiation damage displacement cascade , 1965 .

[83]  Y. Yamamura Energy distributions of constituent atoms of cluster impacts on solid surface , 1991 .

[84]  M. Robinson,et al.  Computer simulation of low-energy sputtering in the binary collision approximation , 1979 .

[85]  Mark T. Robinson,et al.  Computer simulation of atomic-displacement cascades in solids in the binary-collision approximation , 1974 .

[86]  M. Robinson,et al.  On the use of thresholds in damage energy calculations , 1982 .

[87]  B. Sundqvist,et al.  Electronic Sputtering: From Atomic Physics to Continuum Mechanics , 1992 .

[88]  Y. Yamamura,et al.  Interatomic potential in solids and its applications to range calculations , 1988 .

[89]  W. L. Brown,et al.  ANNEALING OF BOMBARDMENT DAMAGE IN A DIAMOND-TYPE LATTICE: THEORETICAL , 1953 .

[90]  H. Bethe Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie , 1930 .

[91]  W. King,et al.  Threshold energy surface and frenkel pair resistivity for Cu , 1983 .

[92]  J. B. Adams,et al.  Atomic-level computer simulation , 1994 .