The Method of Fundamental Solutions for Solving Exterior Axisymmetric Helmholtz Problems with High Wave-Number

In this paper, we investigate the method of fundamental solutions (MFS) for solving exterior Helmholtz problems with high wave-number in axisymmetric domains. Since the coefficient matrix in the linear system resulting from the MFS approximation has a block circulant structure, it can be solved by the matrix decomposition algorithm and fast Fourier transform for the fast computation of large-scale problems and meanwhile saving computer memory space. Several numerical examples are provided to demonstrate its applicability and efficacy in two and three dimensional domains.

[1]  Xiaolin Li,et al.  The method of fundamental solutions for nonlinear elliptic problems , 2009 .

[2]  Graeme Fairweather,et al.  The method of fundamental solutions for axisymmetric acoustic scattering and radiation problems , 1998 .

[3]  Chia-Ming Fan,et al.  The method of fundamental solutions and domain decomposition method for degenerate seepage flownet problems , 2006 .

[4]  Y. Hon,et al.  Domain decomposition for radial basis meshless methods , 2004 .

[5]  Y. Hon,et al.  Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators , 2007 .

[6]  Carlos J. S. Alves,et al.  Crack analysis using an enriched MFS domain decomposition technique , 2006 .

[7]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[8]  Leevan Ling,et al.  Applicability of the method of fundamental solutions , 2009 .

[9]  Carlos Alberto Brebbia Boundary element method , 1979 .

[10]  D. L. Young,et al.  The method of fundamental solutions and condition number analysis for inverse problems of Laplace equation , 2008, Comput. Math. Appl..

[11]  Andreas Karageorghis,et al.  Conformal mapping for the efficient MFS solution of Dirichlet boundary value problems , 2008, Computing.

[12]  Y. Hon,et al.  A fundamental solution method for inverse heat conduction problem , 2004 .

[13]  Tobin A. Driscoll,et al.  Radial Basis Function Interpolation on Irregular Domain through Conformal Transplantation , 2010, J. Sci. Comput..

[14]  Arnold Neumaier,et al.  Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization , 1998, SIAM Rev..

[15]  Andreas Karageorghis,et al.  Some Aspects of the Method of Fundamental Solutions for Certain Biharmonic Problems , 2003 .

[16]  O. C. Zienkiewicz,et al.  The sommerfeld (radiation) condition on infinite domains and its modelling in numerical procedures , 1979 .

[17]  Graeme Fairweather,et al.  The method of fundamental solutions for elliptic boundary value problems , 1998, Adv. Comput. Math..

[18]  Carlos J. S. Alves,et al.  Numerical comparison of two meshfree methods for acoustic wave scattering , 2005 .

[19]  Hokwon A. Cho,et al.  Some comments on the ill-conditioning of the method of fundamental solutions , 2006 .

[20]  Michael A. Golberg,et al.  The method of fundamental solutions for Poisson's equation , 1995 .

[21]  Graeme Fairweather,et al.  A matrix decomposition MFS algorithm for axisymmetric biharmonic problems , 2005, Adv. Comput. Math..

[22]  N. S. Mera The method of fundamental solutions for the backward heat conduction problem , 2005 .

[23]  P. Ramachandran Method of fundamental solutions: singular value decomposition analysis , 2002 .

[24]  Timo Betcke,et al.  Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains , 2007, J. Comput. Phys..

[25]  Graeme Fairweather,et al.  The method of fundamental solutions for axisymmetric potential problems , 1999 .

[26]  A. Seybert,et al.  An advanced computational method for radiation and scattering of acoustic waves in three dimensions , 1985 .

[27]  Andreas Karageorghis,et al.  A Matrix Decomposition MFS Algorithm for Problems in Hollow Axisymmetric Domains , 2006, J. Sci. Comput..

[28]  Daniel Lesnic,et al.  Determination of inner boundaries in modified Helmholtz inverse geometric problems using the method of fundamental solutions , 2012, Math. Comput. Simul..

[29]  Graeme Fairweather,et al.  The method of fundamental solutions for scattering and radiation problems , 2003 .

[30]  Graeme Fairweather,et al.  The Method of Fundamental Solutions for axisymmetric elasticity problems , 2000 .

[31]  A. Karageorghis,et al.  Matrix decomposition RBF algorithm for solving 3D elliptic problems , 2009 .

[32]  T. Kitagawa,et al.  On the numerical stability of the method of fundamental solution applied to the Dirichlet problem , 1988 .

[33]  Andreas Karageorghis,et al.  Some Aspects of the Method of Fundamental Solutions for Certain Harmonic Problems , 2002, J. Sci. Comput..