A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations

Abstract This article deals with the development of a numerical method for the compressible Euler system valid for all Mach numbers: from extremely low to high regimes. In classical fluid dynamic problems, one faces both situations in which the flow is subsonic, and consequently acoustic waves are very fast compared to the velocity of the fluid, and situations in which the fluid moves at high speed and compressibility may generate shock waves. Standard explicit fluid solvers such as Godunov method fail in the description of both flows due to time step restrictions caused by the stiffness of the equations which leads to prohibitive computational costs. In this work, we develop a new method for the full Euler system of gas dynamics based on partitioning the equations into a fast and a low scale. Such a method employs a time step which is independent of the speed of the pressure waves and works uniformly for all Mach numbers. Cell centered discretization on Cartesian meshes is proposed. Numerical results up to the three dimensional case show the accuracy, the robustness and the effectiveness of the proposed approach.

[1]  G. Russo,et al.  Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations , 2000 .

[2]  H. Guillard,et al.  On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes , 2004 .

[3]  H. Guillard,et al.  On the behaviour of upwind schemes in the low Mach number limit , 1999 .

[4]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[5]  Raphaël Loubère,et al.  Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit , 2017, SIAM J. Sci. Comput..

[6]  Michael Dumbser,et al.  A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes , 2016, J. Comput. Phys..

[7]  Florian Bernard,et al.  Linearly implicit all Mach number shock capturing schemes for the Euler equations , 2019, J. Comput. Phys..

[8]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[9]  Jian‐Guo Liu,et al.  An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations , 2012 .

[10]  Mária Lukácová-Medvid'ová,et al.  Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation , 2017, J. Comput. Phys..

[11]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[12]  P. Lions,et al.  Incompressible limit for a viscous compressible fluid , 1998 .

[13]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[14]  J. Katz,et al.  Low-Speed Aerodynamics , 1991 .

[15]  Guy Métivier,et al.  Averaging theorems for conservative systems and the weakly compressible Euler equations , 2003 .

[16]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[17]  H. Paillere,et al.  Comparison of low Mach number models for natural convection problems , 2000 .

[18]  Pierre Degond,et al.  MACH-NUMBER UNIFORM ASYMPTOTIC-PRESERVING GAUGE SCHEMES FOR COMPRESSIBLE FLOWS , 2007 .

[19]  A. Shapiro The dynamics and thermodynamics of compressible fluid flow. , 1953 .

[20]  Samuel Kokh,et al.  An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes , 2016 .

[21]  Claus-Dieter Munz,et al.  A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics , 2014, SIAM J. Sci. Comput..

[22]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[23]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[24]  L. Pareschi,et al.  High order asymptotic-preserving schemes for the Boltzmann equation , 2012, 1201.6479.

[25]  Philippe Villedieu,et al.  An accurate low-Mach scheme for a compressible two-fluid model applied to free-surface flows , 2013, J. Comput. Phys..

[26]  Eleuterio F. Toro,et al.  Flux splitting schemes for the Euler equations , 2012 .

[27]  Rémi Abgrall,et al.  An adaptive shock-capturing algorithm for solving unsteady reactive flows , 2003 .

[28]  Klaus Kaiser,et al.  A Novel Full-Euler Low Mach Number IMEX Splitting , 2020 .

[29]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[30]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[31]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[32]  Stéphane Dellacherie,et al.  Preliminary results for the study of the godunov scheme applied to the linear wave equation with porosity at low mach number , 2015 .

[33]  D. Balsara,et al.  A divergence‐free semi‐implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics , 2018, International journal for numerical methods in fluids.

[34]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[35]  Stéphane Dellacherie,et al.  Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number , 2010, J. Comput. Phys..

[36]  P. Colella,et al.  A Projection Method for Low Speed Flows , 1999 .

[37]  Samuel Kokh,et al.  Large Time Step and Asymptotic Preserving Numerical Schemes for the Gas Dynamics Equations with Source Terms , 2013, SIAM J. Sci. Comput..

[38]  S. Schochet The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit , 1986 .

[39]  Michael Dumbser,et al.  A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier-Stokes equations with general equation of state , 2016, Appl. Math. Comput..

[40]  Giovanni Russo,et al.  Flux-Explicit IMEX Runge-Kutta Schemes for Hyperbolic to Parabolic Relaxation Problems , 2013, SIAM J. Numer. Anal..

[41]  Michael Dumbser,et al.  Linearized acoustic perturbation equations for low Mach number flow with variable density and temperature , 2007, J. Comput. Phys..

[42]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[43]  C. Munz,et al.  The extension of incompressible flow solvers to the weakly compressible regime , 2003 .

[44]  Emil M. Constantinescu,et al.  Semi-Implicit Time Integration of Atmospheric Flows with Characteristic-Based Flux Partitioning , 2015, SIAM J. Sci. Comput..

[45]  A. A. Amsden,et al.  A numerical fluid dynamics calculation method for all flow speeds , 1971 .

[46]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[47]  Walter Boscheri,et al.  High‐order divergence‐free velocity reconstruction for free surface flows on unstructured Voronoi meshes , 2019, International Journal for Numerical Methods in Fluids.

[48]  Claus-Dieter Munz,et al.  Coupling of compressible and incompressible flow regions using the multiple pressure variables approach , 2015 .

[49]  Fabrice Deluzet,et al.  An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field , 2009, J. Comput. Phys..

[50]  Giovanni Russo,et al.  On a Class of Uniformly Accurate IMEX Runge--Kutta Schemes and Applications to Hyperbolic Systems with Relaxation , 2009, SIAM J. Sci. Comput..

[51]  Michael Dumbser,et al.  A semi‐implicit scheme for 3D free surface flows with high‐order velocity reconstruction on unstructured Voronoi meshes , 2013 .

[52]  P. Degond,et al.  All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.

[53]  Thomas Alazard,et al.  Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions , 2005, Advances in Differential Equations.

[54]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[55]  Min Tang,et al.  Second order all speed method for the isentropic Euler equations , 2012 .

[56]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[57]  Pierre Degond,et al.  An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations , 2011, J. Comput. Phys..

[58]  Michael Dumbser,et al.  A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers , 2016, J. Comput. Phys..

[59]  Michael Dumbser,et al.  A staggered space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations on two-dimensional triangular meshes , 2014, 1412.1260.

[60]  Raphaèle Herbin,et al.  Pressure correction staggered schemes for barotropic one-phase and two-phase flows , 2013 .

[61]  K. Asano On the incompressible limit of the compressible Euler equation , 1987 .

[62]  Raphaël Loubère,et al.  Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime , 2017, J. Comput. Phys..

[63]  E. Hofer,et al.  A Partially Implicit Method for Large Stiff Systems of ODEs with Only Few Equations Introducing Small Time-Constants , 1976 .

[64]  P. Wesseling,et al.  A conservative pressure-correction method for flow at all speeds , 2003 .

[65]  Robert L. Lee,et al.  The cause and cure (!) of the spurious pressures generated by certain fem solutions of the incompressible Navier‐Stokes equations: Part 2 , 1981 .

[66]  S. Schochet,et al.  The Incompressible Limit of the Non-Isentropic Euler Equations , 2001 .

[67]  C. Munz,et al.  Multiple pressure variables methods for fluid flow at all Mach numbers , 2005 .

[68]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .