Water-Gas Shift Activity of Atomically Dispersed Cationic Platinum versus Metallic Platinum Clusters on Titania Supports

Atomically dispersed supported metal catalysts offer unique opportunities for designing highly selective catalysts and maximizing the utility of precious metals that have potential applications in a wide variety of industrial chemical reactions. Although substantial advances in understanding the origin of the activity of such highly dispersed metal catalysts have been made for a few chemical reactions, the reaction mechanisms and the nature of the active site—small metal clusters versus single atoms—are still highly debated. Using a combination of density functional theory and microkinetic modeling, we confirm that a positively charged single Pt atom on TiO2(110) can exhibit a very high low-temperature activity for the water-gas shift reaction (TOF > 0.1 s–1 at 473 K). A comparison of these results with our work on TiO2-supported Pt cluster models provides clear evidence that different active sites are responsible for the experimentally observed activity at low and high temperatures. Finally, we explain w...

[1]  G. Stucky,et al.  Supplementary Material for Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts , 2015 .

[2]  G. Vayssilov,et al.  Effect of Si/Al Ratio and Rh Precursor Used on the Synthesis of HY Zeolite-Supported Rhodium Carbonyl Hydride Complexes , 2015 .

[3]  M. Flytzani-Stephanopoulos,et al.  A common single-site Pt(II)-O(OH)x- species stabilized by sodium on "active" and "inert" supports catalyzes the water-gas shift reaction. , 2015, Journal of the American Chemical Society.

[4]  Konstantin M. Neyman,et al.  Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. , 2014, Angewandte Chemie.

[5]  S. C. Ammal,et al.  Water–Gas Shift Catalysis at Corner Atoms of Pt Clusters in Contact with a TiO2 (110) Support Surface , 2014 .

[6]  Piyasan Praserthdam,et al.  A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. , 2014, Angewandte Chemie.

[7]  J. Thomas The concept, reality and utility of single-site heterogeneous catalysts (SSHCs). , 2014, Physical chemistry chemical physics : PCCP.

[8]  M. Flytzani-Stephanopoulos Gold atoms stabilized on various supports catalyze the water-gas shift reaction. , 2014, Accounts of chemical research.

[9]  S. C. Ammal,et al.  Origin of the unique activity of Pt/TiO2 catalysts for the water–gas shift reaction , 2013 .

[10]  M. S. Hegde,et al.  Platinum Ion-Doped TiO2: High Catalytic Activity of Pt2+ with Oxide Ion Vacancy in Ti4+1–xPt2+xO2–x Compared to Pt4+ without Oxide Ion Vacancy in Ti4+1–xPt4+xO2 , 2013 .

[11]  G. M. Stocks,et al.  CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. , 2013, Journal of the American Chemical Society.

[12]  Tao Zhang,et al.  Single-atom catalysts: a new frontier in heterogeneous catalysis. , 2013, Accounts of chemical research.

[13]  Horia Metiu,et al.  Catalysis by doped oxides. , 2013, Chemical reviews.

[14]  Jens K. Nørskov,et al.  Electronic origin of the surface reactivity of transition-metal-doped TiO2(110) , 2013 .

[15]  A. M. Efstathiou,et al.  Mechanistic Studies of the Water–Gas Shift Reaction over Pt/CexZr1–xO2 Catalysts: The Effect of Pt Particle Size and Zr Dopant , 2012 .

[16]  M. Flytzani-Stephanopoulos,et al.  Atomically dispersed supported metal catalysts. , 2012, Annual review of chemical and biomolecular engineering.

[17]  Jorge H. Pazmiño,et al.  Metallic Pt as active sites for the water–gas shift reaction on alkali-promoted supported catalysts , 2012 .

[18]  C. Hardacre,et al.  New insight into mechanisms in water-gas-shift reaction on Au/CeO2(111): a density functional theory and kinetic study. , 2011, Faraday discussions.

[19]  S. C. Ammal,et al.  Nature of Ptn/TiO2(110) Interface under Water-Gas Shift Reaction Conditions: A Constrained ab Initio Thermodynamics Study , 2011 .

[20]  Xiaofeng Yang,et al.  Single-atom catalysis of CO oxidation using Pt1/FeOx. , 2011, Nature chemistry.

[21]  A. M. Efstathiou,et al.  Effects of Reaction Temperature and Support Composition on the Mechanism of Water–Gas Shift Reaction over Supported-Pt Catalysts , 2011 .

[22]  H. Metiu,et al.  Choice of U for DFT+U Calculations for Titanium Oxides , 2011 .

[23]  B. Hammer,et al.  DFT+U study of defects in bulk rutile TiO(2). , 2010, The Journal of chemical physics.

[24]  Manos Mavrikakis,et al.  Alkali-Stabilized Pt-OHx Species Catalyze Low-Temperature Water-Gas Shift Reactions , 2010, Science.

[25]  C. Apesteguía,et al.  Catalytic and DRIFTS study of the WGS reaction on Pt-based catalysts , 2010 .

[26]  Byron Smith R J,et al.  A Review of the Water Gas Shift Reaction Kinetics , 2010 .

[27]  N. Browning,et al.  A site-isolated mononuclear iridium complex catalyst supported on MgO: Characterization by spectroscopy and aberration-corrected scanning transmission electron microscopy , 2010 .

[28]  N. Browning,et al.  Nanoclusters of gold on a high-area support: almost uniform nanoclusters imaged by scanning transmission electron microscopy. , 2009, ACS nano.

[29]  J. Wagner,et al.  Water Gas Shift Catalysis , 2009 .

[30]  Y. Schuurman,et al.  Kinetics and Mechanism of the Water–Gas Shift Reaction Over Platinum Supported Catalysts , 2009 .

[31]  A. M. Efstathiou,et al.  Kinetic and mechanistic studies of the water-gas shift reaction on Pt/TiO2 catalyst , 2009 .

[32]  Parag A. Deshpande,et al.  Nondeactivating Nanosized Ionic Catalysts for Water-Gas Shift Reaction , 2009 .

[33]  M. S. Hegde,et al.  Noble metal ionic catalysts. , 2009, Accounts of chemical research.

[34]  A. Andreasen,et al.  Degree of rate control: how much the energies of intermediates and transition states control rates. , 2009, Journal of the American Chemical Society.

[35]  S. Shaik,et al.  Kinetic-quantum chemical model for catalytic cycles: the Haber-Bosch process and the effect of reagent concentration. , 2008, The journal of physical chemistry. A.

[36]  Steven T. Evans,et al.  Mechanism of the Water Gas Shift Reaction on Pt: First Principles, Experiments, and Microkinetic Modeling , 2008 .

[37]  K. Seshan,et al.  Bifunctional catalysts for single-stage water-gas shift reaction in fuel cell applications. Part 1. Effect of the support on the reaction sequence. , 2007 .

[38]  Robert Raja,et al.  The advantages and future potential of single-site heterogeneous catalysts , 2006 .

[39]  P. Panagiotopoulou,et al.  Particle size effects on the reducibility of titanium dioxide and its relation to the water-gas shift activity of Pt/TiO2 catalysts , 2006 .

[40]  P. Panagiotopoulou,et al.  Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water–gas shift reaction , 2006 .

[41]  S. Shaik,et al.  A combined kinetic-quantum mechanical model for assessment of catalytic cycles: application to cross-coupling and Heck reactions. , 2006, Journal of the American Chemical Society.

[42]  Hajime Iida,et al.  Characterization of a Pt/TiO2 (rutile) catalyst for water gas shift reaction at low-temperature , 2006 .

[43]  A. Bell,et al.  Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. , 2005, The Journal of chemical physics.

[44]  R. Gorte,et al.  Studies of the water-gas-shift reaction with ceria-supported precious metals , 2005 .

[45]  G. Henkelman,et al.  Comparison of methods for finding saddle points without knowledge of the final states. , 2004, The Journal of chemical physics.

[46]  M. Flytzani-Stephanopoulos,et al.  Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts , 2003, Science.

[47]  Raymond J. Gorte,et al.  A comparative study of water-gas-shift reaction over ceria supported metallic catalysts , 2001 .

[48]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[49]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[50]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[51]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[52]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[53]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[54]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[55]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[56]  Harris Simplified method for calculating the energy of weakly interacting fragments. , 1985, Physical review. B, Condensed matter.

[57]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[58]  S. C. Ammal,et al.  On the importance of metal–oxide interface sites for the water–gas shift reaction over Pt/CeO2 catalysts , 2014 .