The first all-sky view of the Milky Way stellar halo with Gaia+2MASS RR Lyrae
暂无分享,去创建一个
V. Belokurov | Sergey E. Koposov | F. Fraternali | C. Nipoti | V. Belokurov | F. Fraternali | S. E. Koposov | D. Erkal | C. Nipoti | G. Iorio | D. Erkal | G. Iorio
[1] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[2] A. J. Drake,et al. Discovery of ∼9000 new RR Lyrae in the southern Catalina surveys , 2015 .
[3] Amina Helmi,et al. The stellar halo of the Galaxy , 2008, 0804.0019.
[4] A. J. Drake,et al. PROBING THE OUTER GALACTIC HALO WITH RR LYRAE FROM THE CATALINA SURVEYS , 2012, 1211.2866.
[5] C. Fabricius,et al. Gaia broad band photometry , 2010, 1008.0815.
[6] J. Sommer-Larsen,et al. GALAXY FORMATION : CDM , FEEDBACK AND THE HUBBLE SEQUENCE , 2008 .
[7] J. Binney,et al. Characterizing stellar halo populations II: the age gradient in blue horizontal-branch stars , 2016, 1608.07297.
[8] R. Schönrich. Galactic rotation and solar motion from stellar kinematics , 2012 .
[9] Sergey E. Koposov,et al. Strong RR Lyrae excess in the Hercules-Aquila Cloud , 2014, Monthly Notices of the Royal Astronomical Society.
[10] F. Shelly,et al. Lincoln Near-Earth Asteroid Program (LINEAR) , 2000 .
[11] J. Molgó,et al. Flare in the Galactic stellar outer disc detected in SDSS-SEGUE data , 2014, 1405.7649.
[12] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[13] V. Springel,et al. Halo mass and assembly history exposed in the faint outskirts: the stellar and dark matter haloes of Illustris galaxies , 2014, 1406.1174.
[14] J. McGraw,et al. RR Lyrae Variable Star Distribution in the Galactic Halo , 1996 .
[15] H. Rix,et al. THE RADIAL PROFILE AND FLATTENING OF THE MILKY WAY’S STELLAR HALO TO 80 kpc FROM THE SEGUE K-GIANT SURVEY , 2015, 1506.06144.
[16] E. Anderson,et al. Two estimates of the distance to the Galactic Centre , 2013, 1309.2629.
[17] A. Helmi,et al. A box full of chocolates: The rich structure of the nearby stellar halo revealed by Gaia and RAVE , 2016, 1611.00222.
[18] Paul M. Brunet,et al. The Gaia mission , 2013, 1303.0303.
[19] V. Belokurov,et al. BROKEN AND UNBROKEN: THE MILKY WAY AND M31 STELLAR HALOS , 2012, 1210.4929.
[20] Sergey E. Koposov,et al. Gaia 1 and 2. A pair of new Galactic star clusters , 2017, Monthly Notices of the Royal Astronomical Society.
[21] J. S. Stuart,et al. EXPLORING THE VARIABLE SKY WITH LINEAR. II. HALO STRUCTURE AND SUBSTRUCTURE TRACED BY RR LYRAE STARS TO 30 kpc , 2013, 1305.2160.
[22] J. Binney,et al. The uncertainty in Galactic parameters , 2009, 0907.4685.
[23] David W. Hogg,et al. THE MILKY WAY'S CIRCULAR-VELOCITY CURVE BETWEEN 4 AND 14 kpc FROM APOGEE DATA , 2012, 1209.0759.
[24] Sergey E. Koposov,et al. The fall of the Northern Unicorn: tangential motions in the Galactic anticentre with SDSS and Gaia , 2017, Monthly Notices of the Royal Astronomical Society.
[25] C. Frenk,et al. The properties of warm dark matter haloes , 2013, 1308.1399.
[26] J. Binney,et al. Action-based distribution functions for spheroidal galaxy components , 2014, 1411.7897.
[27] E. Ofek,et al. STACKING THE INVISIBLES: A GUIDED SEARCH FOR LOW-LUMINOSITY MILKY WAY SATELLITES , 2014, 1407.1835.
[28] M. Milgrom. A Modification of the Newtonian dynamics: Implications for galaxies , 1983 .
[29] M. Steinmetz,et al. Galaxy-induced transformation of dark matter haloes , 2009, 0902.2477.
[30] E. Mamajek,et al. Revised geometric estimates of the North Galactic Pole and the Sun's height above the Galactic mid-plane , 2016, 1610.08125.
[31] Ž. Ivezić,et al. FINDING, CHARACTERIZING, AND CLASSIFYING VARIABLE SOURCES IN MULTI-EPOCH SKY SURVEYS: QSOs AND RR LYRAE IN PS1 3π DATA , 2015, 1511.05527.
[32] L. Miller,et al. 2dF QSO Redshift Survey , 1998, astro-ph/0003206.
[33] A. K. Vivas,et al. DISENTANGLING THE VIRGO OVERDENSITY WITH RR LYRAE STARS , 2016, 1608.08981.
[34] Jonathan R Goodman,et al. Ensemble samplers with affine invariance , 2010 .
[35] Sergey E. Koposov,et al. THE CATALINA SURVEYS PERIODIC VARIABLE STAR CATALOG , 2014, 1405.4290.
[36] N. Amorisco. The accreted stellar halo as a window on halo assembly in L* galaxies , 2017, 1701.02741.
[37] Zeljko Ivezic,et al. The Accretion Origin of the Milky Way’s Stellar Halo , 2007, 0706.0004.
[38] Empirical models for dark matter halos II: inner profile slopes, dynamical profiles, and ρ/σ<3 , 2006, astro-ph/0608613.
[39] R. Poleski,et al. DECIPHERING THE 3D STRUCTURE OF THE OLD GALACTIC BULGE FROM THE OGLE RR LYRAE STARS , 2014, 1412.4121.
[40] Mamoru Doi,et al. Exploring the Variable Sky with the Sloan Digital Sky Survey , 2007, 0704.0655.
[41] Caltech,et al. The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations , 2015, 1507.02282.
[42] Heather A. Rave,et al. The Ghost of Sagittarius and Lumps in the Halo of the Milky Way , 2001, astro-ph/0111095.
[43] R. Schonrich,et al. Rotational signature of the Milky Way stellar halo , 2013, 1304.2765.
[44] Chao Liu,et al. Mapping the Milky Way with LAMOST I: method and overview , 2017, 1701.07831.
[45] D. Lamb,et al. A Low-Latitude Halo Stream around the Milky Way , 2003, astro-ph/0301029.
[46] G. Carraro,et al. Spectroscopy of QUEST RR Lyrae Variables: The New Virgo Stellar Stream , 2005, astro-ph/0510589.
[47] K. Abazajian,et al. THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.
[48] Heidelberg,et al. Substructure revealed by RR Lyraes in SDSS Stripe 82 , 2009, 0906.0498.
[49] A. Robin,et al. Stellar populations in the Milky Way bulge region: towards solving the Galactic bulge and bar shapes using 2MASS data , 2011, 1111.5744.
[50] F. Governato,et al. The Formation of a Realistic Disk Galaxy in Λ-dominated Cosmologies , 2004 .
[51] R. Wechsler,et al. THE EATING HABITS OF MILKY WAY-MASS HALOS: DESTROYED DWARF SATELLITES AND THE METALLICITY DISTRIBUTION OF ACCRETED STARS , 2016, 1601.07905.
[52] G. Kauffmann,et al. The formation and evolution of galaxies within merging dark matter haloes , 1993 .
[53] Linhua Jiang,et al. LIGHT CURVE TEMPLATES AND GALACTIC DISTRIBUTION OF RR LYRAE STARS FROM SLOAN DIGITAL SKY SURVEY STRIPE 82 , 2009, 0910.4611.
[54] A. Helmi,et al. SUBSTRUCTURE IN THE STELLAR HALOS OF THE AQUARIUS SIMULATIONS , 2011, 1101.2544.
[55] N. Evans,et al. Made-to-measure dark matter haloes, elliptical galaxies and dwarf galaxies in action coordinates , 2014, 1412.4640.
[56] H. Hoekstra,et al. A skewer survey of the Galactic halo from deep CFHT and INT images , 2015, 1502.02460.
[57] J. Binney,et al. Characterizing stellar halo populations – I. An extended distribution function for halo K giants , 2016, 1603.09332.
[58] B. Gibson,et al. Constraints on the Galactic bar from the Hercules stream as traced with RAVE across the Galaxy , 2013, 1309.4272.
[59] O. Gerhard,et al. The stellar halo in the inner Milky Way: predicted shape and kinematics , 2016, 1608.08354.
[60] Edward L. Fitzpatrick,et al. Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.
[61] N. Amorisco. Contributions to the accreted stellar halo: an atlas of stellar deposition , 2015, 1511.08806.
[62] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[63] B. Moore,et al. Empirical models for Dark Matter Halos , 2005 .
[64] C. Harrison,et al. MAPPING THE GALACTIC HALO WITH BLUE HORIZONTAL BRANCH STARS FROM THE TWO-DEGREE FIELD QUASAR REDSHIFT SURVEY , 2010, 1007.0013.
[65] S. Kay,et al. Impact of baryon physics on dark matter structures: a detailed simulation study of halo density profiles , 2010, 1001.3447.
[66] Lennart Lindegren,et al. The astrometric core solution for the Gaia mission. Overview of models, algorithms, and software implementation , 2011, 1112.4139.
[67] N. Evans,et al. Is the dark halo of the Milky Way prolate , 2016, 1604.06885.
[68] Halo Properties in Cosmological Simulations of Self-Interacting Cold Dark Matter , 2000, astro-ph/0006218.
[69] Daisuke Nagai,et al. The Effect of Gas Cooling on the Shapes of Dark Matter Halos , 2004, astro-ph/0405189.
[70] H. Rix,et al. MAPPING THE MONOCEROS RING IN 3D WITH PAN-STARRS1 , 2016, 1604.07501.
[71] M. Skrutskie,et al. The Two Micron All Sky Survey (2MASS) , 2006 .
[72] K. Janes,et al. An RR Lyrae Star Survey with the Lick 20-INCH Astrograph IV. a Survey of Three Fields Near the North Galactic Pole , 1966 .
[73] Sergey E. Koposov,et al. submitted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE HERCULES-AQUILA CLOUD , 2007 .
[74] U. Munari,et al. Gaia Data Release 1. The photometric data , 2016, 1612.02952.
[75] Heidi Jo Newberg,et al. SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.
[76] G. Lepage. A new algorithm for adaptive multidimensional integration , 1978 .
[77] Beijing,et al. Astrophysical tests of gravity: a screening map of the nearby universe , 2012, 1204.6046.
[78] P. Frinchaboy,et al. Exploring Halo Substructure with Giant Stars: Spectroscopy of Stars in the Galactic Anticenter Stellar Structure , 2003, astro-ph/0307505.
[79] Coryn A. L. Bailer-Jones,et al. Two stellar components in the halo of the Milky Way , 2007, Nature.
[80] S. Hawley,et al. Evidence for Distinct Components of the Galactic Stellar Halo from 838 RR Lyrae Stars Discovered in the LONEOS-I Survey , 2007, 0706.1583.
[81] David Schlegel,et al. The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.
[82] A. K. Vivas,et al. The QUEST RR Lyrae Survey. I. The First Catalog , 2004 .
[83] Sergey E. Koposov,et al. Clouds, Streams and Bridges: redrawing the blueprint of the Magellanic System with Gaia DR1 , 2016, 1611.04614.
[84] Z. Ivezic,et al. Candidate RR Lyrae Stars Found in Sloan Digital Sky Survey Commissioning Data , 2000, astro-ph/0004130.
[85] A. Saha. A search for distant halo RR Lyrae stars , 1984 .
[86] Kathryn V. Johnston,et al. Tracing Galaxy Formation with Stellar Halos. I. Methods , 2005 .
[87] V. Belokurov,et al. The Milky Way stellar halo out to 40 kpc: squashed, broken but smooth , 2011, 1104.3220.
[88] John L. Tonry,et al. Machine-learned Identification of RR Lyrae Stars from Sparse, Multi-band Data: The PS1 Sample , 2016, 1611.08596.
[89] Sergey E. Koposov,et al. The Clouds are breaking: tracing the Magellanic system with Gaia DR1 Mira variables , 2016, 1611.04600.
[90] D. Nagai,et al. Submitted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/12/01 RESPONSE OF DARK MATTER HALOS TO CONDENSATION OF BARYONS: COSMOLOGICAL SIMULATIONS AND IMPROVED ADIABATIC CONTRACTION MODEL , 2004 .
[91] The QUEST RR Lyrae Survey. II. The Halo Overdensities in the First Catalog , 2006, astro-ph/0604359.
[92] M. Hawkins. A study of the Galactic halo from a complete sample of RR Lyrae variables to B = 21 , 1984 .
[93] N. Evans,et al. Haloes light and dark: dynamical models of the stellar halo and constraints on the mass of the Galaxy , 2015, 1508.02584.
[94] Observatoire de la Côte d'Azur,et al. Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.
[95] M. J. Wolff,et al. First GLIMPSE Results on the Stellar Structure of the Galaxy , 2005 .
[96] H. Hoekstra,et al. A DEEP VIEW OF THE MONOCEROS RING IN THE ANTICENTER DIRECTION: CLUES OF ITS EXTRA-GALACTIC ORIGIN , 2011, 1102.2137.
[97] J. Jeans. On the theory of star-streaming and the structure of the universe , 1915 .
[98] B. Schmidt,et al. PROBING THE STELLAR HALO OF THE MILKY WAY WITH THE SEKBO RR LYRAE SURVEY , 2012 .
[99] Ž. Ivezić,et al. THE SHAPE AND PROFILE OF THE MILKY WAY HALO AS SEEN BY THE CANADA–FRANCE–HAWAII TELESCOPE LEGACY SURVEY , 2010, 1011.4487.