The first all-sky view of the Milky Way stellar halo with Gaia+2MASS RR Lyrae

We exploit the first Gaia data release to study the properties of the Galactic stellar halo as traced by RR Lyrae. We demonstrate that it is possible to select a pure sample of RR Lyrae using only photometric information available in the Gaia+2MASS catalogue. The final sample contains about 21 600 RR Lyrae covering an unprecedented fraction (similar to 60 per cent) of the volume of the Galactic inner halo (R <28 kpc). We study the morphology of the stellar halo by analysing the RR Lyrae distribution with parametric and non-parametric techniques. Taking advantage of the uniform all-sky coverage, we test halo models more sophisticated than usually considered in the literature, such as those with varying flattening, tilts and/or offset of the halo with respect to the Galactic disc. A consistent picture emerges: the inner halo is well reproduced by a smooth distribution of stars settled on triaxial density ellipsoids. The shortest axis is perpendicular to the Milky Way's disc, while the longest axis forms an angle of similar to 70 degrees with the axis connecting the Sun and the Galactic Centre. The elongation along the major axis is mild (p = 1.27), and the vertical flattening is shown to evolve from a squashed state with q approximate to 0.57 in the centre to a more spherical q approximate to 0.75 at the outer edge of our data set. Within the radial range probed, the density profile of the stellar halo is well approximated by a single power law with exponent alpha = -2.96. We do not find evidence of tilt or offset of the halo with respect to the Galaxy's disc.

[1]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[2]  A. J. Drake,et al.  Discovery of ∼9000 new RR Lyrae in the southern Catalina surveys , 2015 .

[3]  Amina Helmi,et al.  The stellar halo of the Galaxy , 2008, 0804.0019.

[4]  A. J. Drake,et al.  PROBING THE OUTER GALACTIC HALO WITH RR LYRAE FROM THE CATALINA SURVEYS , 2012, 1211.2866.

[5]  C. Fabricius,et al.  Gaia broad band photometry , 2010, 1008.0815.

[6]  J. Sommer-Larsen,et al.  GALAXY FORMATION : CDM , FEEDBACK AND THE HUBBLE SEQUENCE , 2008 .

[7]  J. Binney,et al.  Characterizing stellar halo populations II: the age gradient in blue horizontal-branch stars , 2016, 1608.07297.

[8]  R. Schönrich Galactic rotation and solar motion from stellar kinematics , 2012 .

[9]  Sergey E. Koposov,et al.  Strong RR Lyrae excess in the Hercules-Aquila Cloud , 2014, Monthly Notices of the Royal Astronomical Society.

[10]  F. Shelly,et al.  Lincoln Near-Earth Asteroid Program (LINEAR) , 2000 .

[11]  J. Molgó,et al.  Flare in the Galactic stellar outer disc detected in SDSS-SEGUE data , 2014, 1405.7649.

[12]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[13]  V. Springel,et al.  Halo mass and assembly history exposed in the faint outskirts: the stellar and dark matter haloes of Illustris galaxies , 2014, 1406.1174.

[14]  J. McGraw,et al.  RR Lyrae Variable Star Distribution in the Galactic Halo , 1996 .

[15]  H. Rix,et al.  THE RADIAL PROFILE AND FLATTENING OF THE MILKY WAY’S STELLAR HALO TO 80 kpc FROM THE SEGUE K-GIANT SURVEY , 2015, 1506.06144.

[16]  E. Anderson,et al.  Two estimates of the distance to the Galactic Centre , 2013, 1309.2629.

[17]  A. Helmi,et al.  A box full of chocolates: The rich structure of the nearby stellar halo revealed by Gaia and RAVE , 2016, 1611.00222.

[18]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[19]  V. Belokurov,et al.  BROKEN AND UNBROKEN: THE MILKY WAY AND M31 STELLAR HALOS , 2012, 1210.4929.

[20]  Sergey E. Koposov,et al.  Gaia 1 and 2. A pair of new Galactic star clusters , 2017, Monthly Notices of the Royal Astronomical Society.

[21]  J. S. Stuart,et al.  EXPLORING THE VARIABLE SKY WITH LINEAR. II. HALO STRUCTURE AND SUBSTRUCTURE TRACED BY RR LYRAE STARS TO 30 kpc , 2013, 1305.2160.

[22]  J. Binney,et al.  The uncertainty in Galactic parameters , 2009, 0907.4685.

[23]  David W. Hogg,et al.  THE MILKY WAY'S CIRCULAR-VELOCITY CURVE BETWEEN 4 AND 14 kpc FROM APOGEE DATA , 2012, 1209.0759.

[24]  Sergey E. Koposov,et al.  The fall of the Northern Unicorn: tangential motions in the Galactic anticentre with SDSS and Gaia , 2017, Monthly Notices of the Royal Astronomical Society.

[25]  C. Frenk,et al.  The properties of warm dark matter haloes , 2013, 1308.1399.

[26]  J. Binney,et al.  Action-based distribution functions for spheroidal galaxy components , 2014, 1411.7897.

[27]  E. Ofek,et al.  STACKING THE INVISIBLES: A GUIDED SEARCH FOR LOW-LUMINOSITY MILKY WAY SATELLITES , 2014, 1407.1835.

[28]  M. Milgrom A Modification of the Newtonian dynamics: Implications for galaxies , 1983 .

[29]  M. Steinmetz,et al.  Galaxy-induced transformation of dark matter haloes , 2009, 0902.2477.

[30]  E. Mamajek,et al.  Revised geometric estimates of the North Galactic Pole and the Sun's height above the Galactic mid-plane , 2016, 1610.08125.

[31]  Ž. Ivezić,et al.  FINDING, CHARACTERIZING, AND CLASSIFYING VARIABLE SOURCES IN MULTI-EPOCH SKY SURVEYS: QSOs AND RR LYRAE IN PS1 3π DATA , 2015, 1511.05527.

[32]  L. Miller,et al.  2dF QSO Redshift Survey , 1998, astro-ph/0003206.

[33]  A. K. Vivas,et al.  DISENTANGLING THE VIRGO OVERDENSITY WITH RR LYRAE STARS , 2016, 1608.08981.

[34]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[35]  Sergey E. Koposov,et al.  THE CATALINA SURVEYS PERIODIC VARIABLE STAR CATALOG , 2014, 1405.4290.

[36]  N. Amorisco The accreted stellar halo as a window on halo assembly in L* galaxies , 2017, 1701.02741.

[37]  Zeljko Ivezic,et al.  The Accretion Origin of the Milky Way’s Stellar Halo , 2007, 0706.0004.

[38]  Empirical models for dark matter halos II: inner profile slopes, dynamical profiles, and ρ/σ<3 , 2006, astro-ph/0608613.

[39]  R. Poleski,et al.  DECIPHERING THE 3D STRUCTURE OF THE OLD GALACTIC BULGE FROM THE OGLE RR LYRAE STARS , 2014, 1412.4121.

[40]  Mamoru Doi,et al.  Exploring the Variable Sky with the Sloan Digital Sky Survey , 2007, 0704.0655.

[41]  Caltech,et al.  The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations , 2015, 1507.02282.

[42]  Heather A. Rave,et al.  The Ghost of Sagittarius and Lumps in the Halo of the Milky Way , 2001, astro-ph/0111095.

[43]  R. Schonrich,et al.  Rotational signature of the Milky Way stellar halo , 2013, 1304.2765.

[44]  Chao Liu,et al.  Mapping the Milky Way with LAMOST I: method and overview , 2017, 1701.07831.

[45]  D. Lamb,et al.  A Low-Latitude Halo Stream around the Milky Way , 2003, astro-ph/0301029.

[46]  G. Carraro,et al.  Spectroscopy of QUEST RR Lyrae Variables: The New Virgo Stellar Stream , 2005, astro-ph/0510589.

[47]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[48]  Heidelberg,et al.  Substructure revealed by RR Lyraes in SDSS Stripe 82 , 2009, 0906.0498.

[49]  A. Robin,et al.  Stellar populations in the Milky Way bulge region: towards solving the Galactic bulge and bar shapes using 2MASS data , 2011, 1111.5744.

[50]  F. Governato,et al.  The Formation of a Realistic Disk Galaxy in Λ-dominated Cosmologies , 2004 .

[51]  R. Wechsler,et al.  THE EATING HABITS OF MILKY WAY-MASS HALOS: DESTROYED DWARF SATELLITES AND THE METALLICITY DISTRIBUTION OF ACCRETED STARS , 2016, 1601.07905.

[52]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[53]  Linhua Jiang,et al.  LIGHT CURVE TEMPLATES AND GALACTIC DISTRIBUTION OF RR LYRAE STARS FROM SLOAN DIGITAL SKY SURVEY STRIPE 82 , 2009, 0910.4611.

[54]  A. Helmi,et al.  SUBSTRUCTURE IN THE STELLAR HALOS OF THE AQUARIUS SIMULATIONS , 2011, 1101.2544.

[55]  N. Evans,et al.  Made-to-measure dark matter haloes, elliptical galaxies and dwarf galaxies in action coordinates , 2014, 1412.4640.

[56]  H. Hoekstra,et al.  A skewer survey of the Galactic halo from deep CFHT and INT images , 2015, 1502.02460.

[57]  J. Binney,et al.  Characterizing stellar halo populations – I. An extended distribution function for halo K giants , 2016, 1603.09332.

[58]  B. Gibson,et al.  Constraints on the Galactic bar from the Hercules stream as traced with RAVE across the Galaxy , 2013, 1309.4272.

[59]  O. Gerhard,et al.  The stellar halo in the inner Milky Way: predicted shape and kinematics , 2016, 1608.08354.

[60]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[61]  N. Amorisco Contributions to the accreted stellar halo: an atlas of stellar deposition , 2015, 1511.08806.

[62]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[63]  B. Moore,et al.  Empirical models for Dark Matter Halos , 2005 .

[64]  C. Harrison,et al.  MAPPING THE GALACTIC HALO WITH BLUE HORIZONTAL BRANCH STARS FROM THE TWO-DEGREE FIELD QUASAR REDSHIFT SURVEY , 2010, 1007.0013.

[65]  S. Kay,et al.  Impact of baryon physics on dark matter structures: a detailed simulation study of halo density profiles , 2010, 1001.3447.

[66]  Lennart Lindegren,et al.  The astrometric core solution for the Gaia mission. Overview of models, algorithms, and software implementation , 2011, 1112.4139.

[67]  N. Evans,et al.  Is the dark halo of the Milky Way prolate , 2016, 1604.06885.

[68]  Halo Properties in Cosmological Simulations of Self-Interacting Cold Dark Matter , 2000, astro-ph/0006218.

[69]  Daisuke Nagai,et al.  The Effect of Gas Cooling on the Shapes of Dark Matter Halos , 2004, astro-ph/0405189.

[70]  H. Rix,et al.  MAPPING THE MONOCEROS RING IN 3D WITH PAN-STARRS1 , 2016, 1604.07501.

[71]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[72]  K. Janes,et al.  An RR Lyrae Star Survey with the Lick 20-INCH Astrograph IV. a Survey of Three Fields Near the North Galactic Pole , 1966 .

[73]  Sergey E. Koposov,et al.  submitted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE HERCULES-AQUILA CLOUD , 2007 .

[74]  U. Munari,et al.  Gaia Data Release 1. The photometric data , 2016, 1612.02952.

[75]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[76]  G. Lepage A new algorithm for adaptive multidimensional integration , 1978 .

[77]  Beijing,et al.  Astrophysical tests of gravity: a screening map of the nearby universe , 2012, 1204.6046.

[78]  P. Frinchaboy,et al.  Exploring Halo Substructure with Giant Stars: Spectroscopy of Stars in the Galactic Anticenter Stellar Structure , 2003, astro-ph/0307505.

[79]  Coryn A. L. Bailer-Jones,et al.  Two stellar components in the halo of the Milky Way , 2007, Nature.

[80]  S. Hawley,et al.  Evidence for Distinct Components of the Galactic Stellar Halo from 838 RR Lyrae Stars Discovered in the LONEOS-I Survey , 2007, 0706.1583.

[81]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[82]  A. K. Vivas,et al.  The QUEST RR Lyrae Survey. I. The First Catalog , 2004 .

[83]  Sergey E. Koposov,et al.  Clouds, Streams and Bridges: redrawing the blueprint of the Magellanic System with Gaia DR1 , 2016, 1611.04614.

[84]  Z. Ivezic,et al.  Candidate RR Lyrae Stars Found in Sloan Digital Sky Survey Commissioning Data , 2000, astro-ph/0004130.

[85]  A. Saha A search for distant halo RR Lyrae stars , 1984 .

[86]  Kathryn V. Johnston,et al.  Tracing Galaxy Formation with Stellar Halos. I. Methods , 2005 .

[87]  V. Belokurov,et al.  The Milky Way stellar halo out to 40 kpc: squashed, broken but smooth , 2011, 1104.3220.

[88]  John L. Tonry,et al.  Machine-learned Identification of RR Lyrae Stars from Sparse, Multi-band Data: The PS1 Sample , 2016, 1611.08596.

[89]  Sergey E. Koposov,et al.  The Clouds are breaking: tracing the Magellanic system with Gaia DR1 Mira variables , 2016, 1611.04600.

[90]  D. Nagai,et al.  Submitted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/12/01 RESPONSE OF DARK MATTER HALOS TO CONDENSATION OF BARYONS: COSMOLOGICAL SIMULATIONS AND IMPROVED ADIABATIC CONTRACTION MODEL , 2004 .

[91]  The QUEST RR Lyrae Survey. II. The Halo Overdensities in the First Catalog , 2006, astro-ph/0604359.

[92]  M. Hawkins A study of the Galactic halo from a complete sample of RR Lyrae variables to B = 21 , 1984 .

[93]  N. Evans,et al.  Haloes light and dark: dynamical models of the stellar halo and constraints on the mass of the Galaxy , 2015, 1508.02584.

[94]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[95]  M. J. Wolff,et al.  First GLIMPSE Results on the Stellar Structure of the Galaxy , 2005 .

[96]  H. Hoekstra,et al.  A DEEP VIEW OF THE MONOCEROS RING IN THE ANTICENTER DIRECTION: CLUES OF ITS EXTRA-GALACTIC ORIGIN , 2011, 1102.2137.

[97]  J. Jeans On the theory of star-streaming and the structure of the universe , 1915 .

[98]  B. Schmidt,et al.  PROBING THE STELLAR HALO OF THE MILKY WAY WITH THE SEKBO RR LYRAE SURVEY , 2012 .

[99]  Ž. Ivezić,et al.  THE SHAPE AND PROFILE OF THE MILKY WAY HALO AS SEEN BY THE CANADA–FRANCE–HAWAII TELESCOPE LEGACY SURVEY , 2010, 1011.4487.