Nitrogen mediated electronic structure of the Ti(0001) surface

The unusual ability of nitrogen in functionalizing transition metals has tremendous implications for the nitride compounds for chemical, electronic, optical, mechanical, and tribological applications yet a consistent insight into the underlying mechanism remains yet a challenge. A combination of density function theory and photoelectron spectroscopy revealed that the nitrogen atom prefers tetrahedron bonding geometry in the Ti(0001) surface, which derives four additional valence density-of-states:bonding electron pairs, nonbonding lone pairs, electronic holes, and antibonding dipoles. Dipole formation modulates the work function, electron–hole generation opens the bandgap and nonbonding interaction ensures the superlubricity of the N–Ti(0001) skin.

[1]  D. He,et al.  The Hardest Superconducting Metal Nitride , 2015, Scientific Reports.

[2]  Maolin Bo,et al.  Coordination-resolved electron spectrometrics. , 2015, Chemical reviews.

[3]  Nikolaos Kalfagiannis,et al.  Optical Properties and Plasmonic Performance of Titanium Nitride , 2015, Materials.

[4]  Chang Q. Sun,et al.  Oxygenation mediating the valence density-of-states and work function of Ti(0001) skin. , 2015, Physical chemistry chemical physics : PCCP.

[5]  Xiaofeng Fan,et al.  Density Functional Theory Calculations for the Quantum Capacitance Performance of Graphene-Based Electrode Material , 2015 .

[6]  Q. Meng,et al.  On the nature of point defect and its effect on electronic structure of rocksalt hafnium nitride films , 2014 .

[7]  L. Guan,et al.  Study of hydrogen adsorption on the Ti (0 0 0 1)-(1 × 1) surface by density functional theory , 2008 .

[8]  J. Shang,et al.  Ab initio study of oxygen adsorption on the Ti(0001) surface , 2007 .

[9]  M. Scheffler,et al.  Converged properties of clean metal surfaces by all-electron first-principles calculations , 2006 .

[10]  Muhammad N. Huda,et al.  Density functional calculations of the influence of hydrogen adsorption on the surface relaxation of Ti (0001) , 2005 .

[11]  Peter Kroll,et al.  Hafnium nitride with thorium phosphide structure: physical properties and an assessment of the Hf-N, Zr-N, and Ti-N phase diagrams at high pressures and temperatures. , 2003, Physical review letters.

[12]  M. Reiche,et al.  Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes , 2000, Nature.

[13]  L. Bengtsson,et al.  Dipole correction for surface supercell calculations , 1999 .

[14]  S. Mohammad,et al.  High-Luminosity Blue and Blue-Green Gallium Nitride Light-Emitting Diodes , 1995, Science.

[15]  S. Bernasek,et al.  A photoelectron and energy-loss spectroscopy study of Ti and its interaction with H2, O2, N2 and NH3 , 1986 .

[16]  T. Madey,et al.  Photon-stimulated desorption and other spectroscopic studies of the interaction of oxygen with a titanium (001) surface , 1981 .

[17]  F. Himpsel,et al.  Spectroscopy of a surface of known geometry: Ti(0001)-N(1×1) , 1980 .

[18]  D. Hamann,et al.  Electronic structure of a Ti(0001) film , 1979 .

[19]  N. A. Surplice,et al.  Changes in the work function of titanium films owing to the chemisorption of N2, O2, CO and CO2 , 1977 .

[20]  F. Jona,et al.  Atomic underlayer formation during the reaction of Ti{0001} with nitrogen , 1976 .

[21]  F. Jona,et al.  The structure of the clean Ti(0001) surface , 1976 .

[22]  F. Jona,et al.  Low-Energy-Electron-Diffraction Determination of the Atomic Arrangement in a Monatomic Underlayer of Nitrogen on Ti(0001) , 1976 .

[23]  D. Eastman Photoemission energy level measurements of sorbed gases on titanium , 1972 .

[24]  Chang Q. Sun Relaxation of the Chemical Bond , 2014 .

[25]  P. Schaaf Laser nitriding of metals , 2002 .

[26]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[27]  R. L. Park,et al.  Nitrogen, oxygen, and carbon monoxide chemisorption on polycrystalline titanium surfaces , 1978 .