Convergence analysis of hybrid cellular automata for topology optimization

The hybrid cellular automaton (HCA) algorithm was inspired by the structural adaptation of bones to their ever changing mechanical environment. This methodology has been shown to be an effective topology synthesis tool. In previous work, it has been observed that the convergence of the HCA methodology is affected by parameters of the algorithm. As a result, questions have been raised regarding the conditions by which HCA converges to an optimal design. The objective of this investigation is to examine the conditions that guarantee convergence to a Karush-Kuhn-Tucker (KKT) point. In this paper, it is shown that the HCA algorithm is a fixed point iterative scheme and the previously reported KKT optimality conditions are corrected. To demonstrate the convergence properties of the HCA algorithm, a simple cantilevered beam example is utilized. Plots of the spectral radius for projections of the design space are used to show regions of guaranteed convergence.

[1]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems: Index , 1998 .

[2]  Eisuke Kita,et al.  Structural design using cellular automata , 2000 .

[3]  Waleed Fekry Faris,et al.  Optimal Design of an Electrostatically Actuated Micro-Beam for Maximum Pull-In Voltage , 2003 .

[4]  Prabhat Hajela,et al.  A cellular framework for structural analysis and optimization , 2005 .

[5]  D. Carter,et al.  A unifying principle relating stress to trabecular bone morphology , 1986, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[6]  Layne T. Watson,et al.  Design of variable-stiffness composite layers using cellular automata , 2006 .

[7]  R Huiskes,et al.  A theoretical framework for strain-related trabecular bone maintenance and adaptation. , 2005, Journal of biomechanics.

[8]  J. Renaud,et al.  Optimality Conditions of the Hybrid Cellular Automata for Structural Optimization , 2007 .

[9]  H. Keller,et al.  Analysis of Numerical Methods , 1967 .

[10]  Zafer Gürdal,et al.  CELLULAR AUTOMATA FOR DESIGN OF TWO-DIMENSIONAL CONTINUUM STRUCTURES , 2000 .

[11]  Samy Missoum,et al.  Study of a new local update scheme for cellular automata in structural design , 2005 .

[12]  Layne T. Watson,et al.  The Cellular Automata Paradigm for the Parallel Solution of Heat Transfer Problems , 1996, Parallel Algorithms Appl..

[13]  J. Currey The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone. , 1988, Journal of biomechanics.

[14]  Layne T. Watson,et al.  Convergence analysis for cellular automata applied to truss design , 2002 .

[15]  H. Grootenboer,et al.  Adaptive bone-remodeling theory applied to prosthetic-design analysis. , 1987, Journal of biomechanics.

[16]  Arthur W. Burks,et al.  VON NEUMANN'S SELF-REPRODUCING AUTOMATA , 1969 .

[17]  John E. Renaud,et al.  Topology Optimization Using a Hybrid Cellular Automaton Method With Local Control Rules , 2006 .

[18]  Umberto Pesavento,et al.  An Implementation of von Neumann's Self-Reproducing Machine , 1995, Artificial Life.

[19]  Andres Tovar,et al.  Bone Remodeling as a Hybrid Cellular Automaton Optimization Process , 2004 .

[20]  John E. Renaud,et al.  Crashworthiness Design Using Topology Optimization , 2009 .

[21]  M. Zhou,et al.  Applications of the COC Algorithm in Layout Optimization , 1991 .

[22]  Prabhat Hajela,et al.  On the use of energy minimization for CA based analysis in elasticity , 2000 .

[23]  Master Gardener,et al.  Mathematical games: the fantastic combinations of john conway's new solitaire game "life , 1970 .

[24]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[25]  P. Hajela,et al.  Estimation of Young's modulus of single-walled carbon nanotube using cellular automata , 2007, Adv. Eng. Softw..

[26]  John J. Tyson,et al.  Third Generation Cellular Automation for Modeling Excitable Media , 1992, PPSC.

[27]  Zafer Gürdal,et al.  Cellular Automata for design of truss structures with linear and nonlinear response , 2000 .

[28]  Z. Gürdal,et al.  Optimal design of an electrostatically actuated microbeam for maximum pull-in voltage , 2005 .

[29]  Rik Huiskes,et al.  Effects of mechanical forces on maintenance and adaptation of form in trabecular bone , 2000, Nature.

[30]  Layne T. Watson,et al.  Pipeline implementation of cellular automata for structural design on message-passing multiprocessors , 2006, Math. Comput. Model..

[31]  L. Watson,et al.  Diffusion and wave propagation in cellular automaton models of excitable media , 1992 .

[32]  Zafer Gürdal,et al.  Structural design using Cellular Automata for eigenvalue problems , 2004 .

[33]  Zafer Gürdal,et al.  Combined topology and fiber path design of composite layers using cellular automata , 2005 .

[34]  Arthur W. Burks,et al.  Essays on cellular automata , 1970 .