Exact solution of the Klein Gordon equation in the presence of a minimal length

[1]  S. B. Faruque,et al.  Influence of a generalized uncertainty principle on the energy spectrum of (1+1)-dimensional Dirac equation with linear potential , 2008 .

[2]  D. Spector Minimal length uncertainty relations and new shape invariant models , 2007, 0707.1028.

[3]  P. Roy,et al.  Shape invariance approach to exact solutions of the Klein–Gordon equation , 2007 .

[4]  Khireddine Nouicer Pauli-Hamiltonian in the presence of minimal lengths , 2006 .

[5]  Khireddine Nouicer An exact solution of the one-dimensional Dirac oscillator in the presence of minimal lengths , 2006 .

[6]  Gang Chen,et al.  Exactly solvable potentials of the Klein–Gordon equation with the supersymmetry method , 2006 .

[7]  A. S. Dutra,et al.  On some classes of exactly-solvable Klein–Gordon equations , 2006 .

[8]  V. Tkachuk,et al.  One-dimensional Coulomb-like problem in deformed space with minimal length , 2005, quant-ph/0507117.

[9]  A. D. Alhaidari,et al.  Dirac and Klein Gordon equations with equal scalar and vector potentials , 2005, hep-th/0503208.

[10]  Gang Chen,et al.  Solution of the Klein–Gordon for exponential scalar and vector potentials , 2005 .

[11]  S. Benczik,et al.  Hydrogen-atom spectrum under a minimal-length hypothesis (4 pages) , 2005, hep-th/0502222.

[12]  A. Castro Klein–Gordon particles in mixed vector–scalar inversely linear potentials , 2005, hep-th/0502201.

[13]  C. Quesne,et al.  Dirac oscillator with nonzero minimal uncertainty in position , 2004, math-ph/0412052.

[14]  Chun-Sheng Jia,et al.  Bound states of the Klein–Gordon equation with vector and scalar Rosen–Morse-type potentials☆ , 2004 .

[15]  Chun-Sheng Jia,et al.  Bound states of the Klein¿Gordon equation with vector and scalar five-parameter exponential-type potentials , 2004 .

[16]  Zhi-mei Lou,et al.  Exact bound state solutions of the s-wave Klein–Gordon equation with the generalized Hulthén potential , 2004 .

[17]  R. Akhoury,et al.  Minimal length uncertainty relation and the hydrogen spectrum , 2003, hep-ph/0302108.

[18]  I. Dadic,et al.  Harmonic oscillator with minimal length uncertainty relations and ladder operators , 2002, hep-th/0210264.

[19]  D. Minic,et al.  Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations , 2001, hep-th/0111181.

[20]  F. Brau Minimal length uncertainty relation and the hydrogen atom , 1999, quant-ph/9905033.

[21]  A. Khare Supersymmetry in quantum mechanics , 1997, math-ph/0409003.

[22]  Achim Kempf Non-pointlike particles in harmonic oscillators , 1996, hep-th/9604045.

[23]  H. Hinrichsen,et al.  Maximal localization in the presence of minimal uncertainties in positions and in momenta , 1995, hep-th/9510144.

[24]  Mann,et al.  Hilbert space representation of the minimal length uncertainty relation. , 1994, Physical review. D, Particles and fields.

[25]  L. Garay Quantum Gravity and Minimum Length , 1994, gr-qc/9403008.

[26]  A. Kempf Uncertainty relation in quantum mechanics with quantum group symmetry , 1993, hep-th/9311147.

[27]  M. Maggiore A generalized uncertainty principle in quantum gravity , 1993, hep-th/9301067.

[28]  D. Gross,et al.  String Theory Beyond the Planck Scale , 1988 .

[29]  J. Kang,et al.  Dynamics of light and heavy bound quarks , 1975 .