Quantum key distribution using polarization and frequency hyperentangled photons

We propose a two-step quantum key distribution protocol using frequency and polarization hyperentangled photons. In this protocol, key information is encoded by unitary operations on the hyperentangled photons, and the hyperentangled photons are sent in two steps. We also designed a state measurement device and analyzed the security of the protocol.

[1]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[2]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[3]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[4]  Jing Zhang,et al.  Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state , 2000 .

[5]  L Aolita,et al.  Quantum communication without alignment using multiple-qubit single-photon states. , 2007, Physical review letters.

[6]  P. Xue,et al.  Conditional efficient multiuser quantum cryptography network , 2002 .

[7]  Jiangde Peng,et al.  Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs , 2008 .

[8]  F. L. Yan,et al.  A scheme for secure direct communication using EPR pairs and teleportation , 2004 .

[9]  G. Long,et al.  Controlled order rearrangement encryption for quantum key distribution , 2003, quant-ph/0308172.

[10]  Antoni Wojcik,et al.  Comment on 'Quantum dense key distribution' , 2005 .

[11]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[12]  Chuan Wang,et al.  Arbitrarily long distance quantum communication using inspection and power insertion , 2009 .

[13]  N. Gisin,et al.  Optimal Eavesdropping in Quantum Cryptography. I , 1997, quant-ph/9701039.

[14]  Cai Qing-yu,et al.  Deterministic secure communication without using entanglement , 2004 .

[15]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[16]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[17]  Zhan-jun Zhang,et al.  Improving Wojcik's eavesdropping attack on the ping-pong protocol , 2004 .

[18]  N. Gisin,et al.  OPTIMAL EAVESDROPPING IN QUANTUM CRYPTOGRAPHY. I. INFORMATION BOUND AND OPTIMAL STRATEGY , 1997 .

[19]  Y. Seurin,et al.  Nonlinear AlGaAs waveguide for the generation of counterpropagating twin photons in the telecom range , 2005 .

[20]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[21]  Samuel L. Braunstein,et al.  Dense coding for continuous variables , 1999, quant-ph/9910010.

[22]  N. Gisin,et al.  Low jitter up-conversion detectors for telecom wavelength GHz QKD , 2006 .

[23]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[24]  Horace P. Yuen UNCONDITIONALLY SECURE QUANTUM BIT COMMITMENT IS POSSIBLE , 2000 .

[25]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[26]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[27]  A. M. Colla,et al.  Quantum dense key distribution , 2004 .

[28]  Long Gui-lu,et al.  General Quantum Interference Principle and Duality Computer , 2006 .

[29]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[30]  G. Vallone,et al.  Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement , 2006, quant-ph/0609080.

[31]  A. M. Colla,et al.  Reply to "Comment on `Quantum dense key distribution'" (4 pages) , 2005 .

[32]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[33]  Yi Zhao,et al.  Experimental quantum key distribution with decoy states. , 2006, Physical review letters.

[34]  Quantum bit commitment and unconditional security , 2002, quant-ph/0207089.

[35]  Zhang Zhan-jun,et al.  Quantum dialogue revisited , 2005 .

[36]  Robert Prevedel,et al.  Photonic entanglement as a resource in quantum computation and quantum communication , 2007, 0803.4402.

[37]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[38]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[39]  Zhang Cunlin,et al.  Quantum Computation with Nonlinear Optics , 2008 .

[40]  Fuguo Deng,et al.  Bidirectional quantum key distribution protocol with practical faint laser pulses , 2004 .

[41]  Yong-Sheng Zhang,et al.  Quantum key distribution via quantum encryption , 2000, quant-ph/0011034.

[42]  M. Fejer,et al.  Differential phase shift quantum key distribution experiment over 105 km fibre , 2005, quant-ph/0507110.

[43]  Wang Chuan,et al.  Quantum secure direct communication and deterministic secure quantum communication , 2007 .

[44]  Y. Shih,et al.  Quantum teleportation with a complete Bell state measurement , 2000, Physical Review Letters.

[45]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[46]  S. Walborn,et al.  Hyperentanglement-assisted Bell-state analysis , 2003, quant-ph/0307212.

[47]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.