Terahertz Radiation from Gallium Phosphide Avalanche Transit Time Sources

[1]  H. Inokawa,et al.  1.0 THz GaN IMPATT Source: Effect of Parasitic Series Resistance , 2018, Journal of Infrared, Millimeter, and Terahertz Waves.

[2]  M. Ohtsu,et al.  GaP Homojunction LEDs Fabricated by Dressed-Photon-Phonon-Assisted Annealing , 2015 .

[3]  A. Acharyya,et al.  Large-signal characterization of DDR silicon IMPATTs operating up to 0.5 THz , 2013, International Journal of Microwave and Wireless Technologies.

[4]  A. Acharyya,et al.  Potentiality of IMPATT Devices as Terahertz Source: An Avalanche Response Time-based Approach to Determine the Upper Cut-off Frequency Limits , 2013 .

[5]  A. Acharyya,et al.  Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device , 2013 .

[6]  Steven A. Ringel,et al.  High temperature step-flow growth of gallium phosphide by molecular beam epitaxy and metalorganic chemical vapor deposition , 2011 .

[7]  M. Mukherjee,et al.  Prospects of 4H-SiC Double Drift Region IMPATT Device as a Photo-Sensitive High-Power Source at 0.7 Terahertz Frequency Regime , 2008 .

[8]  A. K. Panda,et al.  A comparative study on the high band gap materials(GaN and SiC)- based IMPATTs , 2007, 2007 Asia-Pacific Microwave Conference.

[9]  E. Bano,et al.  4H-SiC IMPATT Diode Fabrication and Testing , 2002 .

[10]  M. Melloch,et al.  Experimental demonstration of a silicon carbide IMPATT oscillator , 2001, IEEE Electron Device Letters.

[11]  A. K. Panda,et al.  DC and high-frequency characteristics of GaN-based IMPATTs , 2001 .

[12]  A. Lebedev,et al.  Wide-gap semiconductors for high-power electronics , 1999 .

[13]  G. Haddad,et al.  The potential of InP IMPATT diodes as high-power millimeter-wave sources: First experimental results , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[14]  F. Schäffler,et al.  D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz , 1996 .

[15]  J. Freyer,et al.  140 GHz GaAs double-Read IMPATT diodes , 1995 .

[16]  Heribert Eisele,et al.  Selective etching technology for 94 GHz GaAs IMPATT diodes on diamond heat sinks , 1989 .

[17]  H. Morkoç,et al.  High‐field electron‐drift velocity and temperature in gallium phosphide , 1987 .

[18]  J.-F. Luy,et al.  A 90-GHz double-drift IMPATT diode made with Si MBE , 1987, IEEE Transactions on Electron Devices.

[19]  R. Johnson,et al.  High‐field electron drift velocity measurements in gallium phosphide , 1985 .

[20]  Y. Kao,et al.  Electron and hole carrier mobilities for liquid phase epitaxially grown GaP in the temperature range 200–550 K , 1983 .

[21]  T. A. Midford,et al.  Millimeter-Wave CW IMPATT Diodes and Oscillators , 1979 .

[22]  D. Wight,et al.  Concentration dependence of the minority carrier diffusion length and lifetime in GaP , 1974 .

[23]  P. B. Hart Green and yellow emitting devices in vapor-grown gallium phosphide , 1973 .

[24]  Aritra Acharyya,et al.  Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources , 2012, Applied Nanoscience.

[25]  Moumita Mukherjee,et al.  Bias current optimization of Wurtzite-GaN DDR IMPATT diode for high power operation at THz frequencies , 2010 .

[26]  R. Chaffin,et al.  Gallium phosphide high temperature diodes , 1981 .