Local density of states in mesoscopic samples from scanning gate microscopy

We study the relationship between the local density of states (LDOS) and the conductance variation Delta G in scanning-gate-microscopy experiments on mesoscopic structures as a charged tip scans above the sample surface. We present an analytical model showing that in the linear-response regime the conductance shift Delta G is proportional to the Hilbert transform of the LDOS and hence a generalized Kramers-Kronig relation holds between LDOS and Delta G. We analyze the physical conditions for the validity of this relationship both for one-dimensional and two-dimensional systems when several channels contribute to the transport. We focus on realistic Aharonov-Bohm rings including a random distribution of impurities and analyze the LDOS-Delta G correspondence by means of exact numerical simulations, when localized states or semiclassical orbits characterize the wave function of the system.

[1]  K. Richter,et al.  Quantum transport in nonuniform magnetic fields: Aharonov-Bohm ring as a spin switch. , 2001, Physical review letters.

[2]  A Cappy,et al.  Imaging electron wave functions inside open quantum rings. , 2007, Physical review letters.

[3]  A. Gossard,et al.  Quantum Hall effect transition in scanning gate experiments , 2007 .

[4]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[5]  Measurement of the tip-induced potential in scanning gate experiments , 2007, cond-mat/0702490.

[6]  T. Ouisse,et al.  Imaging and controlling electron transport inside a quantum ring , 2006 .

[7]  Büttiker,et al.  Partial densities of states, scattering matrices, and Green's functions. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  M F Crommie,et al.  Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.

[9]  A Cappy,et al.  Dwell-time-limited coherence in open quantum dots. , 2005, Physical review letters.

[10]  R. M. Westervelt,et al.  Coherent branched flow in a two-dimensional electron gas , 2000, Nature.

[11]  Rashba spin precession in quantum-Hall edge channels , 2004, cond-mat/0409580.

[12]  D. Ferry,et al.  Imaging of quantum interference patterns within a quantum point contact , 2006 .

[13]  Karl Hess,et al.  Theory for a quantum modulated transistor , 1989 .

[14]  Wave-function mapping conditions in open quantum dot structures , 2003, cond-mat/0303399.

[15]  D. Ferry,et al.  Scanning gate microscopy investigations on an InGaAs quantum point contact , 2005 .

[16]  J. Weis Hall Potential Profiles in Quantum Hall Samples Measured by a Low-Temperature Scanning Force Microscope , 2007 .

[17]  Topographic mapping of the quantum hall liquid using a few-electron bubble , 2000, Science.

[18]  Green's function technique for studying electron flow in two-dimensional mesoscopic samples , 2004, cond-mat/0411733.

[19]  D. Ferry,et al.  Wave Function Scarring Effects in Open Stadium Shaped Quantum Dots , 1997 .

[20]  S. Huant,et al.  Electronic properties of two-dimensional D− centres , 1992 .

[21]  D. Ferry,et al.  Imaging of integer quantum Hall edge state in a quantum point contact via scanning gate microscopy , 2005 .

[22]  P. A. Schulz,et al.  Imaging and switching of Fano resonances in open quantum cavities , 2005 .

[23]  Heller,et al.  Imaging coherent electron flow from a quantum point contact , 2000, Science.

[24]  F. Stern,et al.  Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit , 1967 .

[25]  Büttiker,et al.  Four-terminal phase-coherent conductance. , 1986, Physical review letters.

[26]  K. West,et al.  Unexpected features of branched flow through high-mobility two-dimensional electron gases , 2010, 1009.3670.

[27]  D. Vasileska,et al.  Lead-Orientation-Dependent Wave Function Scarring in Open Quantum Dots , 1999 .

[28]  Imaging fractal conductance fluctuations and scarred wave functions in a quantum billiard. , 2003, Physical review letters.

[29]  R. Westervelt,et al.  Imaging a single-electron quantum dot. , 2005, Nano letters (Print).

[30]  A. Cresti Microscopic current imaging in quantum point contact devices , 2006 .

[31]  G. Mahan Many-particle physics , 1981 .

[32]  Spatially resolved manipulation of single electrons in quantum dots using a scanned probe. , 2004, cond-mat/0411264.

[33]  George Kirczenow,et al.  Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires , 2001 .

[34]  Hilde Hardtdegen,et al.  Suppression of weak antilocalization in Ga x In 1-x As/InP narrow quantum wires , 2006 .

[35]  R. Westervelt,et al.  Scanned probe imaging of quantum dots inside InAs nanowires. , 2007, Nano letters.

[36]  DiVincenzo,et al.  Classical and quantum ballistic-transport anomalies in microjunctions. , 1991, Physical review. B, Condensed matter.

[37]  E. Anderson,et al.  Scanned probe microscopy of electronic transport in carbon nanotubes. , 2000, Physical review letters.