Tunnelling system coupled to a harmonic oscillator: an analytical treatment

We give an analytical formula in term of continued fraction expansions for the spectral function of a tunnelling electron, coupled to a local lattice oscillation, in a two-site cluster at non-zero temperature. We also study the spectral function of the polaron, a better defined quasi-particle in the anti-adiabatic regime and at sufficiently low temperature. The exact results obtained allow us to look into a wide range of temperature and coupling. Asymptotic results can be obtained directly from the continued fraction expansions in both adiabatic and anti-adiabatic regimes. In the intermediate/strong anti-adiabatic case, in contrast to the usual Lang–Firsov approximation scheme, we found that there is no shrinking of the polaron band as temperature increases. Polaron bandwidth gets broader by temperature effects.

[1]  S. Ciuchi,et al.  Spectral properties and isotope effect in strongly interacting systems: Mott-Hubbard insulator versus polaronic semiconductor , 2005, cond-mat/0505423.

[2]  O. Gunnarsson,et al.  Dispersion of incoherent spectral features in systems with strong electron-phonon coupling , 2004, cond-mat/0410247.

[3]  Robert G. Endres,et al.  Colloquium: The quest for high-conductance DNA , 2004 .

[4]  S. Ciuchi,et al.  Dynamical mean-field theory of transport of small polarons. , 2003, Physical review letters.

[5]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[6]  W. Kelin,et al.  Analytical Solutions of the Two-Site Holstein Model by the Coherent State Expansion , 2003 .

[7]  Takeshi Egami,et al.  Underneath the Bragg Peaks , 2003 .

[8]  W. Kelin,et al.  Exact solutions for the two-site Holstein model , 2002 .

[9]  S. Ulloa,et al.  Polarons with a twist , 2002, cond-mat/0204526.

[10]  Klaus Schulten,et al.  Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  S. Ciuchi,et al.  Interplay between spin and phonon fluctuations in the double-exchange model for the manganites , 2001, cond-mat/0107062.

[12]  M. Wagner,et al.  Quantum dynamics of the prototype polaron model , 2001 .

[13]  G. Kotliar,et al.  Cellular Dynamical Mean Field Approach to Strongly Correlated Systems , 2000, cond-mat/0010328.

[14]  G. Kotliar,et al.  Effects of boson dispersion in fermion-boson coupled systems , 2000, cond-mat/0005395.

[15]  T. Pruschke,et al.  A non-crossing approximation for the study of intersite correlations , 1999, cond-mat/9906253.

[16]  E. Mello,et al.  Quasiparticle properties of small polarons and bipolarons , 1998 .

[17]  J. Iglesias,et al.  Electronic and Phononic States of the Holstein–Hubbard Dimer of Variable Length: A Variational Approach , 1998, cond-mat/9806284.

[18]  Yu.A. Firsov,et al.  Two-site model and its relation to the polaron-crystal model , 1997 .

[19]  J. Robin SPECTRAL PROPERTIES OF THE SMALL POLARON , 1997, cond-mat/9704237.

[20]  M. S. Abdelmonem,et al.  CORRIGENDUM: The analytic inversion of any finite symmetric tridiagonal matrix , 1997 .

[21]  S. Ciuchi,et al.  DYNAMICAL MEAN-FIELD THEORY OF THE SMALL POLARON , 1997, cond-mat/9703118.

[22]  E. Mello,et al.  DYNAMICAL PROPERTIES OF SMALL POLARONS , 1997, cond-mat/9703121.

[23]  Shraiman,et al.  Fermi-liquid-to-polaron crossover. I. General results. , 1996, Physical review. B, Condensed matter.

[24]  Hegerfeldt,et al.  Projection postulate and atomic quantum Zeno effect. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[25]  V. Viswanath,et al.  The Recursion Method , 1994 .

[26]  Ray,et al.  From electron to small polaron: An exact cluster solution. , 1994, Physical review. B, Condensed matter.

[27]  Vladislav Cápek,et al.  Organic molecular crystals : interaction, localization, and transport phenomena , 1994 .

[28]  U. Weiss Quantum Dissipative Systems , 1993 .

[29]  Ranninger,et al.  Two-site polaron problem: Electronic and vibrational properties. , 1992, Physical review. B, Condensed matter.

[30]  Wagner,et al.  Fulton-Gouterman ground states for soft tunneling systems. , 1989, Physical review. B, Condensed matter.

[31]  Alan J. Heeger,et al.  Solitons in conducting polymers , 1988 .

[32]  Löwen Absence of phase transitions in Holstein systems. , 1988, Physical review. B, Condensed matter.

[33]  M. Cini,et al.  Exactly solved electron-boson models in condensed matter and molecular physics by a generalised recursion method , 1988 .

[34]  Löwen,et al.  Proof of the nonexistence of (formal) phase transitions in polaron systems. I. , 1987, Physical review. B, Condensed matter.

[35]  M. Wagner A reflective unitary transformation for phonon-assisted quantum transport , 1985 .

[36]  M. Wagner An exponential alternative to the Fulton-Gouterman transformation , 1984 .

[37]  M. Wagner Generalised Fulton-Gouterman transformation for systems of Abelian symmetry , 1984 .

[38]  N. Rivier,et al.  Dynamics and thermodynamics of the molecular polaron , 1977 .

[39]  S. Swain A continued fraction solution to the problem of a single atom interacting with a single radiation mode in the electric dipole approximation , 1973 .

[40]  Kevin Cahill,et al.  DENSITY OPERATORS AND QUASIPROBABILITY DISTRIBUTIONS. , 1969 .

[41]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[42]  M. Gouterman,et al.  Vibronic Coupling. I. Mathematical Treatment for Two Electronic States , 1961 .

[43]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .

[44]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .