Neurons of the inferior olive respond to broad classes of sensory input while subject to homeostatic control

Purkinje cells in the cerebellum integrate input from sensory organs with that from premotor centres. Purkinje cells use a variety of sensory inputs relaying information from the environment to modify motor control. Here we investigated to what extent the climbing fibre inputs to Purkinje cells signal mono‐ or multi‐sensory information, and to what extent this signalling is subject to recent history of activity. We show that individual climbing fibres convey multiple types of sensory information, together providing a rich mosaic projection pattern of sensory signals across the cerebellar cortex. Moreover, firing probability of climbing fibres following sensory stimulation depends strongly on the recent history of activity, showing a tendency to homeostatic dampening.

[1]  T. Yaksh,et al.  Quantitative assessment of tactile allodynia in the rat paw , 1994, Journal of Neuroscience Methods.

[2]  G. M. Shambes,et al.  Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. , 1978, Brain, behavior and evolution.

[3]  T. Ebner,et al.  Rhythmic discharge of climbing fibre afferents in response to natural peripheral stimuli in the cat. , 1984, The Journal of physiology.

[4]  J. Raymond,et al.  Timing Rules for Synaptic Plasticity Matched to Behavioral Function , 2016, Neuron.

[5]  M. Barrot,et al.  Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge , 2013, Proceedings of the National Academy of Sciences.

[6]  Gang Chen,et al.  Cerebellar Cortical Molecular Layer Inhibition Is Organized in Parasagittal Zones , 2006, The Journal of Neuroscience.

[7]  E. Kehoe,et al.  Transfer across CS-US intervals and sensory modalities in classical conditioning of the rabbit , 1984 .

[8]  E. J. Lang,et al.  Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits , 2015, Nature Reviews Neuroscience.

[9]  Timothy A. Blenkinsop,et al.  Block of Inferior Olive Gap Junctional Coupling Decreases Purkinje Cell Complex Spike Synchrony and Rhythmicity , 2006, The Journal of Neuroscience.

[10]  W. T. Thach Somatosensory receptive fields of single units in cat cerebellar cortex. , 1967, Journal of neurophysiology.

[11]  E. J. Lang,et al.  Relationship of complex spike synchrony bands and climbing fiber projection determined by reference to aldolase C compartments in crus IIa of the rat cerebellar cortex , 2007, The Journal of comparative neurology.

[12]  R. Harvey,et al.  Quantitatives studies on the mammalian cerebellum , 1991, Progress in Neurobiology.

[13]  Ian Parker,et al.  A comparison of fluorescent Ca²⁺ indicators for imaging local Ca²⁺ signals in cultured cells. , 2015, Cell calcium.

[14]  Timothy J Ebner,et al.  Climbing Fibers Control Purkinje Cell Representations of Behavior , 2017, The Journal of Neuroscience.

[15]  J. Simpson,et al.  Microcircuitry and function of the inferior olive , 1998, Trends in Neurosciences.

[16]  Mark J. Schnitzer,et al.  Automated Analysis of Cellular Signals from Large-Scale Calcium Imaging Data , 2009, Neuron.

[17]  Andrei Khilkevich,et al.  Relating Cerebellar Purkinje Cell Activity to the Timing and Amplitude of Conditioned Eyelid Responses , 2015, The Journal of Neuroscience.

[18]  J. Voogd,et al.  The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum , 1979, The Journal of comparative neurology.

[19]  Peer Wulff,et al.  Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice , 2015, Cell reports.

[20]  Cullen B. Owens,et al.  Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements , 2011, Front. Integr. Neurosci..

[21]  J. Simpson,et al.  Temporal relations of the complex spike activity of Purkinje cell pairs in the vestibulocerebellum of rabbits , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  N. H. Sabah,et al.  Cutaneous mechanoreceptors influencing impulse discharges in cerebellar cortex. III. In Purkyně cells by climbing fiber input , 2004, Experimental Brain Research.

[23]  Y Shinoda,et al.  The Entire Trajectories of Single Olivocerebellar Axons in the Cerebellar Cortex and their Contribution to Cerebellar Compartmentalization , 2001, The Journal of Neuroscience.

[24]  Vincenzo Romano,et al.  Potentiation of cerebellar Purkinje cells facilitates whisker reflex adaptation through increased simple spike activity , 2018, bioRxiv.

[25]  Vincenzo Romano,et al.  Cerebellar Potentiation and Learning a Whisker-Based Object Localization Task with a Time Response Window , 2014, The Journal of Neuroscience.

[26]  Douglas R. Wylie,et al.  More on climbing fiber signals and their consequence(s) , 1996 .

[27]  J. Albus A Theory of Cerebellar Function , 1971 .

[28]  Dominik Endres,et al.  Learning from the past: A reverberation of past errors in the cerebellar climbing fiber signal , 2018, PLoS biology.

[29]  Zhanmin Lin,et al.  Cerebellar modules operate at different frequencies , 2014, eLife.

[30]  Martijn Schonewille,et al.  Mechanisms underlying vestibulo‐cerebellar motor learning in mice depend on movement direction , 2017, The Journal of physiology.

[31]  T. Hoogland,et al.  Behavioral Correlates of Complex Spike Synchrony in Cerebellar Microzones , 2014, The Journal of Neuroscience.

[32]  C. Lim,et al.  Images in clinical medicine. Pendular nystagmus and palatomyoclonus from hypertrophic olivary degeneration. , 2009, The New England journal of medicine.

[33]  Yan Yang,et al.  Duration of complex-spikes grades Purkinje cell plasticity and cerebellar motor learning , 2014, Nature.

[34]  R. Schmidt,et al.  Cortical and peripheral modification of cerebellar climbing fibre activity arising from cutaneous mechanoreceptors , 1973, The Journal of physiology.

[35]  J. Voogd,et al.  Mesodiencephalic and cerebellar terminals terminate upon the same dendritic spines in the glomeruli of the cat and rat inferior olive: An ultrastructural study using a combination of [3H]-leucine and wheat germ agglutinin coupled horseradish peroxidase anterograde tracing , 1990, Neuroscience.

[36]  J. Freeman,et al.  Cross-modal savings in the contralateral eyelid conditioned response. , 2015, Behavioral neuroscience.

[37]  Shogo Ohmae,et al.  Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice , 2015, Nature Neuroscience.

[38]  R. S. van der Giessen,et al.  Modulation of Murine Olivary Connexin 36 Gap Junctions by PKA and CaMKII , 2017, Front. Cell. Neurosci..

[39]  I. Sugihara,et al.  Projection of reconstructed single purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum , 2009, The Journal of comparative neurology.

[40]  Kouichi Hashimoto,et al.  The anatomical pathway from the mesodiencephalic junction to the inferior olive relays perioral sensory signals to the cerebellum in the mouse , 2018, The Journal of physiology.

[41]  E. Hilgard,et al.  Conditioned eyelid responses in monkeys, with a comparison of dog, monkey, and man. , 1936 .

[42]  Tycho M. Hoogland,et al.  Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation , 2013, Front. Neural Circuits.

[43]  T. Ebner,et al.  Climbing fiber afferent modulation during a visually guided, multi-joint arm movement in the monkey , 1987, Brain Research.

[44]  J SZENTAGOTHAI,et al.  THE USE OF DEGENERATION METHODS IN THE INVESTIGATION OF SHORT NEURONAL CONNEXIONS. , 1965, Progress in brain research.

[45]  Masao Ito Error detection and representation in the olivo-cerebellar system , 2013, Front. Neural Circuits.

[46]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Michael Häusser,et al.  Synaptically Induced Long-Term Modulation of Electrical Coupling in the Inferior Olive , 2014, Neuron.

[48]  Vincenzo Romano,et al.  Quasiperiodic rhythms of the inferior olive , 2019, PLoS Comput. Biol..

[49]  R. F. Thompson,et al.  Cerebellum: essential involvement in the classically conditioned eyelid response. , 1984, Science.

[50]  T. Ruigrok Ins and Outs of Cerebellar Modules , 2010, The Cerebellum.

[51]  Yosef Yarom,et al.  Disruption of the olivo-cerebellar circuit by Purkinje neuron-specific ablation of BK channels , 2010, Proceedings of the National Academy of Sciences.

[52]  Laurens W. J. Bosman,et al.  Inferior Olive: All Ins and Outs , 2019, Handbook of the Cerebellum and Cerebellar Disorders.

[53]  Y Shinoda,et al.  Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat , 1999, The Journal of comparative neurology.

[54]  J. Freeman,et al.  Cerebellar inactivation impairs cross modal savings of eyeblink conditioning. , 2009, Behavioral neuroscience.

[55]  Samuel S-H Wang,et al.  Identification and clustering of event patterns from in vivo multiphoton optical recordings of neuronal ensembles. , 2008, Journal of neurophysiology.

[56]  M. Kano,et al.  A highly sensitive fluorescent indicator dye for calcium imaging of neural activity in vitro and in vivo , 2014, The European journal of neuroscience.

[57]  Richard Apps,et al.  Cerebellar cortical organization: a one-map hypothesis , 2009, Nature Reviews Neuroscience.

[58]  O. Oscarsson Termination and functional organization of the dorsal spino‐olivocerebellar path , 1967, Brain research.

[59]  Detail, proportion, and foci among face receptive fields of climbing fiber responses in the cat cerebellum. , 1994, Somatosensory & motor research.

[60]  S. Koekkoek,et al.  Spatiotemporal firing patterns in the cerebellum , 2011, Nature Reviews Neuroscience.

[61]  R. Llinás,et al.  Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. , 1974, Journal of neurophysiology.

[62]  M. Glickstein,et al.  The anatomy of the cerebellum , 1998, Trends in Neurosciences.

[63]  Paul J Tuite,et al.  Progressive ataxia and palatal tremor (PAPT): clinical and MRI assessment with review of palatal tremors. , 2004, Brain : a journal of neurology.

[64]  J. Disterhoft,et al.  Eyeblink conditioning in the rabbit (Oryctolagus cuniculus) with stimulation of the mystacial vibrissae as a conditioned stimulus. , 2001, Behavioral neuroscience.

[65]  Masahiko Watanabe,et al.  Structure–Function Relationships between Aldolase C/Zebrin II Expression and Complex Spike Synchrony in the Cerebellum , 2015, The Journal of Neuroscience.

[66]  Abigail L. Person,et al.  Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei , 2011, Nature.

[67]  Henrik Jörntell,et al.  Cerebellar Modules and Their Role as Operational Cerebellar Processing Units , 2018, The Cerebellum.

[68]  Ian E Brown,et al.  The Influence of Somatosensory Cortex on Climbing Fiber Responses in the Lateral Hemispheres of the Rat Cerebellum after Peripheral Tactile Stimulation , 2002, The Journal of Neuroscience.

[69]  M. Garwicz,et al.  Anatomical and physiological foundations of cerebellar information processing , 2005, Nature Reviews Neuroscience.

[70]  J. Eccles,et al.  POSTSYNAPTIC INHIBITION OF CEREBELLAR PURKINJE CELLS. , 1964, Journal of neurophysiology.

[71]  R. Llinás,et al.  Inferior olive: its role in motor learing , 1975, Science.

[72]  Bernd Kuhn,et al.  Simultaneous dendritic voltage and calcium imaging and somatic recording from Purkinje neurons in awake mice , 2018, Nature Communications.

[73]  Farzaneh Najafi,et al.  Coding of stimulus strength via analog calcium signals in Purkinje cell dendrites of awake mice , 2014, eLife.

[74]  Andrew K. Wise,et al.  Systematic Regional Variations in Purkinje Cell Spiking Patterns , 2014, PloS one.

[75]  J. Schouenborg,et al.  Topography and nociceptive receptive fields of climbing fibres projecting to the cerebellar anterior lobe in the cat. , 1991, The Journal of physiology.

[76]  J. Voogd,et al.  Intracellular labeling of neurons in the medial accessory olive of the cat: I. Physiology and light microscopy , 1990, The Journal of comparative neurology.

[77]  J. Deuchars,et al.  Role of Olivary Electrical Coupling in Cerebellar Motor Learning , 2008, Neuron.

[78]  J. Disterhoft,et al.  Vibrissa-Signaled Eyeblink Conditioning Induces Somatosensory Cortical Plasticity , 2006, The Journal of Neuroscience.

[79]  R. Snider,et al.  RECEIVING AREAS OF THE TACTILE, AUDITORY, AND VISUAL SYSTEMS IN THE CEREBELLUM , 1944 .

[80]  C. D. De Zeeuw,et al.  Conditioned climbing fiber responses in cerebellar cortex and nuclei , 2019, Neuroscience Letters.

[81]  R. Llinás,et al.  The olivo-cerebellar system: Functional properties as revealed by harmaline-induced tremor , 1973, Experimental Brain Research.

[82]  M. Häusser,et al.  Spatial Pattern Coding of Sensory Information by Climbing Fiber-Evoked Calcium Signals in Networks of Neighboring Cerebellar Purkinje Cells , 2009, The Journal of Neuroscience.

[83]  Kris M. Horn,et al.  Activation of climbing fibers , 2008, The Cerebellum.

[84]  R. Llinás,et al.  In vivo mouse inferior olive neurons exhibit heterogeneous subthreshold oscillations and spiking patterns , 2007, Proceedings of the National Academy of Sciences.

[85]  J. Bower,et al.  Multiple Purkinje Cell Recording in Rodent Cerebellar Cortex , 1989, The European journal of neuroscience.

[86]  Tatsuya Kimura,et al.  Cerebellar complex spikes encode both destinations and errors in arm movements , 1998, Nature.

[87]  C. I. Zeeuw,et al.  Motor Learning and the Cerebellum , 2015 .

[88]  Cathrin B. Canto,et al.  Role of Synchronous Activation of Cerebellar Purkinje Cell Ensembles in Multi-joint Movement Control , 2015, Current Biology.

[89]  R. Llinás,et al.  Dynamic organization of motor control within the olivocerebellar system , 1995, Nature.

[90]  C. Bell,et al.  Relations among climbing fiber responses of nearby Purkinje Cells. , 1972, Journal of neurophysiology.

[91]  J. Voogd,et al.  Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: Anterograde tracing combined with immunocytochemistry , 1989, The Journal of comparative neurology.

[92]  Reza Shadmehr,et al.  Encoding of error and learning to correct that error by the Purkinje cells of the cerebellum , 2018, Nature Neuroscience.

[93]  J. Welsh,et al.  Is autism due to brain desynchronization? , 2005, International Journal of Developmental Neuroscience.

[94]  M. Ito,et al.  Long-term depression. , 1989, Annual review of neuroscience.

[95]  Masao Ito,et al.  Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex , 1982, Neuroscience Letters.

[96]  C. Hansel,et al.  Bidirectional Parallel Fiber Plasticity in the Cerebellum under Climbing Fiber Control , 2004, Neuron.

[97]  R. Llinás,et al.  Patterns of Spontaneous Purkinje Cell Complex Spike Activity in the Awake Rat , 1999, The Journal of Neuroscience.

[98]  Zhenyu Gao,et al.  Distributed synergistic plasticity and cerebellar learning , 2012, Nature Reviews Neuroscience.

[99]  S. Wang,et al.  Reliable Coding Emerges from Coactivation of Climbing Fibers in Microbands of Cerebellar Purkinje Neurons , 2009, The Journal of Neuroscience.

[100]  I. Billig,et al.  Trigeminocerebellar and trigemino-olivary projections in rats , 1996, Neuroscience Research.

[101]  P. Strata,et al.  The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat † , 1982, The Journal of physiology.

[102]  Mati Joshua,et al.  Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions , 2018, bioRxiv.

[103]  D. Tank,et al.  Widespread State-Dependent Shifts in Cerebellar Activity in Locomoting Mice , 2012, PloS one.

[104]  M. Diamond,et al.  Whisker Vibration Information Carried by Rat Barrel Cortex Neurons , 2004, The Journal of Neuroscience.

[105]  S. Wang,et al.  In vivo calcium imaging of circuit activity in cerebellar cortex. , 2005, Journal of neurophysiology.

[106]  Chris I De Zeeuw,et al.  Encoding of whisker input by cerebellar Purkinje cells , 2010, The Journal of physiology.

[107]  Kenneth D. Laxer,et al.  Somatotopic organization of climbing fiber projections from low threshold cutaneous afferents to pars intermedia of cerebellar cortex in the cat , 1980, Brain Research.

[108]  M. Wiesendanger,et al.  Organization of climbing fibre projections to the cerebellar cortex from trigeminal cutaneous afferents and from the SI face area of the cerebral cortex in the cat. , 1975, The Journal of physiology.

[109]  Y. Yarom,et al.  Electrotonic coupling in the inferior olivary nucleus revealed by simultaneous double patch recordings. , 2002, Journal of neurophysiology.

[110]  T. Kemper,et al.  Neuroanatomic observations of the brain in autism: a review and future directions , 2005, International Journal of Developmental Neuroscience.