Gap-Plasmon-Enhanced Nanofocusing Near-Field Microscopy

We report the observation of coherent light scattering from nanometer-sized gap regions in a nanofocusing scanning near-field optical microscope. When approaching a nanofocusing gold taper to the surface of a thin semitransparent gold film and detecting in transmission, we find a steep increase in scattering intensity over the last 5 nm in a near-field signal selected in k-space. This is confirmed as a signature of highly confined gap plasmons by detailed comparisons to finite element method simulations. The simulations reveal that the confinement is adjustable via the underlying probe–sample distance control scheme even to levels well below the taper apex radius. This controlled experimental realization of gap plasmons and the extraction of their signature in a scanning probe microscope pave the way toward broadband spectroscopy at and below single-nanometer length scales, using parallel detection at multiple wavelengths, for instance, in transient absorption or two-dimensional spectroscopy.

[1]  Fritz Keilmann,et al.  Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy , 2000 .

[2]  Nader A. Issa,et al.  Optical Nanofocusing on Tapered Metallic Waveguides , 2007 .

[3]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[4]  Graham R Fleming,et al.  Lessons from nature about solar light harvesting. , 2011, Nature chemistry.

[5]  C. N. Lau,et al.  Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump-probe nanoscopy. , 2014, Nano letters.

[6]  L. Novotný,et al.  Simultaneous Fluorescence and Raman Scattering from Single Carbon Nanotubes. , 2003 .

[7]  M. Raschke,et al.  Group delay and dispersion in adiabatic plasmonic nanofocusing. , 2013, Optics letters.

[8]  Renato Zenobi,et al.  Characterizing unusual metal substrates for gap‐mode tip‐enhanced Raman spectroscopy , 2013 .

[9]  D. Kern,et al.  Three-dimensional optical antennas : Nanocones in an apertureless scanning near-field microscope , 2008 .

[10]  G. Cerullo,et al.  Coherent ultrafast charge transfer in an organic photovoltaic blend , 2014, Science.

[11]  G. Steinmeyer,et al.  Femtosecond light transmission and subradiant damping in plasmonic crystals. , 2005, Physical review letters.

[12]  K. Whites,et al.  Electrodynamics of spatial clusters of spheres: Substrate effects , 2003 .

[13]  Marcus Sackrow,et al.  Imaging nanometre-sized hot spots on smooth au films with high-resolution tip-enhanced luminescence and Raman near-field optical microscopy. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  C. Lienau,et al.  Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles. , 2011, Nano letters.

[15]  Stephen R Quake,et al.  Tip-enhanced fluorescence microscopy at 10 nanometer resolution. , 2004, Physical review letters.

[16]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[17]  Namkyoo Park,et al.  Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution. , 2012, ACS nano.

[18]  K. Kern,et al.  Tip-substrate interaction in optical near-field microscopy , 2007 .

[19]  Richard F. Haglund,et al.  Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. , 2012, ACS nano.

[20]  Kh. V. Nerkararyan,et al.  Superfocusing of surface polaritons in the conical structure , 2000 .

[21]  A. Downes,et al.  Simulations of atomic resolution tip-enhanced optical microscopy. , 2006, Optics express.

[22]  Xiaoji G. Xu,et al.  Pushing the Sample-Size Limit of Infrared Vibrational Nanospectroscopy: From Monolayer toward Single Molecule Sensitivity. , 2012, The journal of physical chemistry letters.

[23]  B. Pettinger,et al.  Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. , 2012, Annual review of physical chemistry.

[24]  V. Konopsky Operation of scanning plasmon near-field microscope with gold and silver tips in tapping mode: demonstration of subtip resolution , 2000 .

[25]  M. Stockman Erratum: Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides [Phys. Rev. Lett.93, 137404 (2004)] , 2011 .

[26]  T. Lian,et al.  Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures. , 2012, Journal of the American Chemical Society.

[27]  I. Notingher,et al.  Effect of sample and substrate electric properties on the electric field enhancement at the apex of SPM nanotips. , 2005, The journal of physical chemistry. B.

[28]  Renato Zenobi,et al.  Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. , 2013, Angewandte Chemie.

[29]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[30]  A. Mal’shukov,et al.  Surface-enhanced Raman scattering. The present status , 1990 .

[31]  P. Kik,et al.  Gap-Plasmon Enhanced Gold Nanoparticle Photoluminescence , 2014 .

[32]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[33]  R. Vogelgesang,et al.  Simulation of optical near and far fields of dielectric apertureless scanning probes , 2006 .

[34]  P. K. Aravind,et al.  The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy , 1983 .

[35]  Dang Yuan Lei,et al.  Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach. , 2011, ACS nano.

[36]  R. Rendell,et al.  Surface plasmons confined by microstructures on tunnel junctions , 1981 .

[37]  Harald Fuchs,et al.  Material contrast in scanning near-field optical microscopy at 1–10 nm resolution , 1997 .

[38]  R. Olmon,et al.  Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale. , 2012, The journal of physical chemistry letters.

[39]  Volker Deckert,et al.  Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. , 2012, Nature nanotechnology.

[40]  Biqin Dong,et al.  Quantitative Imaging of Rapidly Decaying Evanescent Fields Using Plasmonic Near-Field Scanning Optical Microscopy , 2013, Scientific Reports.

[41]  Francesco De Angelis,et al.  Fully analytical description of adiabatic compression in dissipative polaritonic structures , 2012 .

[42]  B. Akhremitchev,et al.  Enhancement of the weak scattered signal in apertureless near-field scanning infrared microscopy , 2003 .

[43]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[44]  Resonance shift effects in apertureless scanning near-field optical microscopy , 2002, cond-mat/0208481.

[45]  William P King,et al.  Scanning probe microscopy. , 1994, Analytical chemistry.

[46]  Fritz Keilmann,et al.  Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy. , 2014, Nano letters.

[47]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[48]  C. Neacşu Tip-enhanced near-field optical microscopy , 2011 .

[49]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[50]  Lukas Novotny,et al.  High-resolution near-field Raman microscopy of single-walled carbon nanotubes. , 2003, Physical review letters.

[51]  C. Lienau,et al.  k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy , 2013, Beilstein journal of nanotechnology.

[52]  K. Braun,et al.  Nanoscale spectroscopic imaging of organic semiconductor films by plasmon-polariton coupling. , 2010, Physical review letters.

[53]  T. Elsaesser,et al.  Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. , 2007, Nano letters.

[54]  Xianji Piao,et al.  Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas. , 2014, Nano letters.

[55]  Zachary D. Schultz,et al.  Tip enhanced Raman scattering: plasmonic enhancements for nanoscale chemical analysis , 2014 .

[56]  R. Rendell,et al.  Role of Local Plasmon Modes in Light Emission from Small-particle Tunnel Junctions , 1978 .

[57]  Claus Ropers,et al.  Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. , 2010, Nano letters.