Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations
暂无分享,去创建一个
Long Chen | Jinchao Xu | Gabriel Wittum | Shi Shu | Liuqiang Zhong | Long Chen | Jinchao Xu | G. Wittum | S. Shu | L. Zhong
[1] Serge Nicaise,et al. Singularities of eddy current problems , 2003 .
[2] William F. Mitchell,et al. A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.
[3] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[4] Jinchao Xu,et al. Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..
[5] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[6] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[7] J. Schöberl. CONVERGENCE OF ADAPTIVE EDGE ELEMENT METHODS FOR THE 3 D EDDY CURRENTS EQUATIONS , 2007 .
[8] Ricardo H. Nochetto,et al. Optimal multilevel methods for H(grad), H(curl), and H(div) systems on graded and unstructured grids , 2009 .
[9] R. Hiptmair. Multigrid Method for Maxwell's Equations , 1998 .
[10] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[11] R. Hiptmair,et al. Local Multigrid in H(curl) , 2009, 0901.0764.
[12] Carsten Carstensen,et al. Convergence analysis of an adaptive edge finite element method for the 2D eddy current equations , 2005, J. Num. Math..
[13] Rob P. Stevenson,et al. Sparse Tensor Product Wavelet Approximation of Singular Functions , 2010, SIAM J. Math. Anal..
[14] Alberto Valli,et al. An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations , 1999, Math. Comput..
[15] R. Nochetto,et al. Theory of adaptive finite element methods: An introduction , 2009 .
[16] Joseph E. Pasciak,et al. Analysis of a Multigrid Algorithm for Time Harmonic Maxwell Equations , 2004, SIAM J. Numer. Anal..
[17] Peter Monk,et al. A posteriori error indicators for Maxwell's equations , 1998 .
[18] M. Costabel,et al. Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .
[19] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[20] A. Robinson. I. Introduction , 1991 .
[21] Peter Monk,et al. A finite element method for approximating the time-harmonic Maxwell equations , 1992 .
[22] Hoppe,et al. CONVERGENCE OF ADAPTIVE EDGE ELEMENT METHODS FOR THE 3D EDDY CURRENTS EQUATIONS , 2009 .
[23] Igor Kossaczký. A recursive approach to local mesh refinement in two and three dimensions , 1994 .
[24] Ferenc Izsák,et al. A reliable and efficient implicit a posteriori error estimation technique for the time harmonic Maxwell equations , 2007 .
[25] P. Deuflhard,et al. Adaptive Multilevel Methods for Edge Element Discretizations of Maxwell's Equations , 1997 .
[26] Zhong LiuQiang. Fast algorithms of edge element discretizations and adaptive finite element methods for two classes of Maxwell equations , 2013 .
[27] ROB STEVENSON,et al. The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..
[28] R. Hoppe,et al. Residual based a posteriori error estimators for eddy current computation , 2000 .
[29] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[30] Snorre H. Christiansen,et al. Smoothed projections in finite element exterior calculus , 2007, Math. Comput..
[31] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[32] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[33] Jinchao Xu. A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .
[34] P. Monk. A Simple Proof of Convergence for an Edge Element Discretization of Maxwell’s Equations , 2003 .
[35] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[36] Weiying Zheng,et al. An Adaptive Multilevel Method for Time-Harmonic Maxwell Equations with Singularities , 2007, SIAM J. Sci. Comput..
[37] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[38] Douglas N. Arnold,et al. Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.
[39] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..
[40] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[41] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[42] Joseph E. Pasciak,et al. Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations , 2003, Math. Comput..
[43] Joachim Schöberl,et al. A posteriori error estimates for Maxwell equations , 2007, Math. Comput..
[44] Joachim Sch Oberl. COMMUTING QUASI INTERPOLATION OPERATORS FOR MIXED FINITE ELEMENTS , 2004 .
[45] Jinchao Xu,et al. OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS * , 2009 .
[46] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..