Bin Packing with Conflicts: A Generic Branch-and-Price Algorithm

The bin packing problem with conflicts consists of packing items in a minimum number of bins of limited capacity while avoiding joint assignments of items that are in conflict. Our study demonstrates that a generic implementation of a branch-and-price algorithm using specific pricing oracle yields comparatively good performance for this problem. We use our black-box branch-and-price solver BaPCod, relying on its generic branching scheme and primal heuristics. We developed a dynamic programming algorithm for pricing when the conflict graph is an interval graph, and a depth-first-search branch-and-bound approach for pricing when the conflict graph has no special structure. The exact method is tested on instances from the literature where the conflict graph is an interval graph, as well as harder instances that we generated with an arbitrary conflict graph and larger number of items per bin. Our computational experiment report sets new benchmark results for this problem, closing all open instances of the literature in one hour of CPU time.

[1]  Ulrich Pferschy,et al.  The Knapsack Problem with Conflict Graphs , 2009, J. Graph Algorithms Appl..

[2]  Stephan Olariu,et al.  The ultimate interval graph recognition algorithm? , 1998, SODA '98.

[3]  Hans Kellerer,et al.  Knapsack problems , 2004 .

[4]  Nicolas Bonichon,et al.  Distributed Approximation Algorithm for Resource Clustering , 2008, SIROCCO.

[5]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[6]  Paolo Toth,et al.  Algorithms for the Bin Packing Problem with Conflicts , 2010, INFORMS J. Comput..

[7]  Mhand Hifi,et al.  Reduction strategies and exact algorithms for the disjunctively constrained knapsack problem , 2007, Comput. Oper. Res..

[8]  François Vanderbeck,et al.  Branching in branch-and-price: a generic scheme , 2011, Math. Program..

[9]  Klaus Jansen An Approximation Scheme for Bin Packing with Conflicts , 1999, J. Comb. Optim..

[10]  I. Mutual exclusion scheduling with interval graphs or related classes. Part I , 2008 .

[11]  Stanislav Busygin,et al.  A new trust region technique for the maximum weight clique problem , 2006, Discret. Appl. Math..

[12]  Ruslan Sadykov,et al.  Column Generation based Primal Heuristics , 2010, Electron. Notes Discret. Math..

[13]  Nicos Christofides,et al.  The vehicle routing problem , 1976, Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle.

[14]  Edward G. Coffman,et al.  Mutual Exclusion Scheduling , 1996, Theor. Comput. Sci..

[15]  Sabine R. Öhring,et al.  Approximation algorithms for time constrained scheduling , 1995, Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing.

[16]  Frédéric Gardi,et al.  Ordonnancement avec exclusion mutuelle par un graphe d'intervalles ou d'une classe apparentée : complexité et algorithmes , 2005 .

[17]  P. Pardalos,et al.  An exact algorithm for the maximum clique problem , 1990 .

[18]  Matthew L. Ginsberg,et al.  Limited Discrepancy Search , 1995, IJCAI.

[19]  Michel Gendreau,et al.  Heuristics and lower bounds for the bin packing problem with conflicts , 2004, Comput. Oper. Res..

[20]  Mariem Gzara,et al.  A Branch-and-Price Algorithm for the Bin Packing Problem with Conflicts , 2011, INFORMS J. Comput..

[21]  Frédéric Gardi Mutual exclusion scheduling with interval graphs or related classes, Part I , 2009, Discret. Appl. Math..

[22]  Laurence A. Wolsey,et al.  Reformulation and Decomposition of Integer Programs , 2009, 50 Years of Integer Programming.

[23]  Paolo Toth,et al.  The Vehicle Routing Problem , 2002, SIAM monographs on discrete mathematics and applications.

[24]  Martin W. P. Savelsbergh,et al.  A generic view of Dantzig-Wolfe decomposition in mixed integer programming , 2006, Oper. Res. Lett..

[25]  Ellis L. Johnson,et al.  A note of the knapsack problem with special ordered sets , 1981, Oper. Res. Lett..

[26]  Klaus Jansen,et al.  Approximation Algorithms for Time Constrained Scheduling , 1997, Inf. Comput..

[27]  Emanuel Falkenauer,et al.  A hybrid grouping genetic algorithm for bin packing , 1996, J. Heuristics.

[28]  Gilbert Laporte,et al.  Examination timetabling by computer , 1982, Comput. Oper. Res..