Stanley-Wilf limits are typically exponential

For a permutation $\pi$, let $S_{n}(\pi)$ be the number of permutations on $n$ letters avoiding $\pi$. Marcus and Tardos proved the celebrated Stanley-Wilf conjecture that $L(\pi)= \lim_{n \to \infty} S_n(\pi)^{1/n}$ exists and is finite. Backed by numerical evidence, it has been conjectured by many researchers over the years that $L(\pi)=\Theta(k^2)$ for every permutation $\pi$ on $k$ letters. We disprove this conjecture, showing that $L(\pi)=2^{k^{\Theta(1)}}$ for almost all permutations $\pi$ on $k$ letters.

[1]  R. Stanley Longest alternating subsequences of permutations , 2005, math/0511419.

[2]  Miklós Bóna New records in Stanley-Wilf limits , 2007, Eur. J. Comb..

[3]  Martin Klazar,et al.  The Füredi-Hajnal Conjecture Implies the Stanley-Wilf Conjecture , 2000 .

[4]  Noga Alon,et al.  On the Number of Permutations Avoiding a Given Pattern , 2000, J. Comb. Theory, Ser. A.

[5]  Julian West,et al.  Permutations with forbidden subsequences, and, stack-sortable permutations , 1990 .

[6]  George S. Lueker,et al.  Packing random rectangles , 1999 .

[7]  Dániel Marx,et al.  Finding small patterns in permutations in linear time , 2013, SODA.

[8]  R. Stanley Increasing and Decreasing Subsequences , 2006 .

[9]  Miklos Bona On the Best Upper Bound for Permutations Avoiding A Pattern of a Given Length , 2012 .

[10]  Richard Arratia,et al.  On the Stanley-Wilf Conjecture for the Number of Permutations Avoiding a Given Pattern , 1999, Electron. J. Comb..

[11]  Jonathan Novak An asymptotic version of a theorem of Knuth , 2011, Adv. Appl. Math..

[12]  Zoltán Füredi,et al.  Davenport-Schinzel theory of matrices , 1992, Discret. Math..

[13]  M. Zabrocki,et al.  On the Stanley-Wilf limit of 4231-avoiding permutations and a conjecture of Arratia , 2006, Adv. Appl. Math..

[14]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[15]  Miklós Bóna,et al.  Combinatorics of permutations , 2022, SIGA.

[16]  Einar Steingrímsson,et al.  Some open problems on permutation patterns , 2012, Surveys in Combinatorics.

[17]  Svante Janson,et al.  Random dyadic tilings of the unit square , 2002, Random Struct. Algorithms.

[18]  Miklós Bóna The limit of a Stanley-Wilf sequence is not always rational, and layered patterns beat monotone patterns , 2005, J. Comb. Theory, Ser. A.

[19]  Peter Winkler,et al.  THE PHASE TRANSITION FOR DYADIC TILINGS , 2011 .

[20]  Amitai Regev,et al.  Asymptotic values for degrees associated with strips of young diagrams , 1981 .

[21]  J. Shaw Combinatory Analysis , 1917, Nature.

[22]  Donald E. Knuth,et al.  The art of computer programming: V.1.: Fundamental algorithms , 1997 .

[23]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[24]  Josef Cibulka,et al.  On constants in the Füredi-Hajnal and the Stanley-Wilf conjecture , 2009, J. Comb. Theory, Ser. A.

[25]  Sergey Kitaev,et al.  Patterns in Permutations and Words , 2011, Monographs in Theoretical Computer Science. An EATCS Series.

[26]  Martin Klazar,et al.  On Growth Rates of Closed Permutation Classes , 2003, Electron. J. Comb..

[27]  Miklós Bóna Combinatorics of Permutations, Second Edition , 2012, Discrete mathematics and its applications.

[28]  Vít Jelínek,et al.  Upper bounds for the Stanley-Wilf limit of 1324 and other layered patterns , 2011, J. Comb. Theory A.

[29]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[30]  János Pach,et al.  Forbidden paths and cycles in ordered graphs and matrices , 2006 .

[31]  Gábor Tardos,et al.  Excluded permutation matrices and the Stanley-Wilf conjecture , 2004, J. Comb. Theory, Ser. A.

[32]  Miklós Bóna A New Upper Bound for 1324-Avoiding Permutations , 2014, Comb. Probab. Comput..