Dark Energy Survey year 1 results: Galaxy-galaxy lensing

We present galaxy-galaxy lensing measurements from 1321 sq. deg. of the Dark Energy Survey (DES) Year 1 (Y1) data. The lens sample consists of a selection of 660,000 red galaxies with high-precision photometric redshifts, known as redMaGiC, split into five tomographic bins in the redshift range 0.15<z<0.9 . We use two different source samples, obtained from the Metacalibration (26 million galaxies) and Im3shape (18 million galaxies) shear estimation codes, which are split into four photometric redshift bins in the range 0.2<z<1.3 . We perform extensive testing of potential systematic effects that can bias the galaxy-galaxy lensing signal, including those from shear estimation, photometric redshifts, and observational properties. Covariances are obtained from jackknife subsamples of the data and validated with a suite of log-normal simulations. We use the shear-ratio geometric test to obtain independent constraints on the mean of the source redshift distributions, providing validation of those obtained from other photo-z studies with the same data. We find consistency between the galaxy bias estimates obtained from our galaxy-galaxy lensing measurements and from galaxy clustering, therefore showing the galaxy-matter cross-correlation coefficient r to be consistent with one, measured over the scales used for the cosmological analysis. The results in this work present one of the three two-point correlation functions, along with galaxy clustering and cosmic shear, used in the DES cosmological analysis of Y1 data, and hence the methodology and the systematics tests presented here provide a critical input for that study as well as for future cosmological analyses in DES and other photometric galaxy surveys.

R. Nichol | D. Gerdes | J. Frieman | O. Lahav | F. Castander | P. Fosalba | F. Abdalla | J. Mohr | D. Bacon | D. Kirk | A. Rosell | L. Costa | K. Honscheid | M. Maia | A. Ross | E. Rykoff | F. Sobreira | M. Swanson | G. Bernstein | E. Rozo | Peter Melchior | D. Tucker | C. Chang | S. Kuhlmann | M. Kind | R. Gruendl | W. Hartley | J. Annis | M. Sako | S. Allam | H. Diehl | J. Gschwend | I. Sevilla-Noarbe | R. Wechsler | T. Abbott | K. Bechtol | E. Bertin | D. Brooks | E. Buckley-Geer | D. Burke | J. Carretero | M. Crocce | C. Cunha | C. D'Andrea | C. Davis | S. Desai | A. Drlica-Wagner | T. Eifler | B. Flaugher | E. Gaztañaga | D. Gruen | G. Gutiérrez | B. Hoyle | D. James | T. Jeltema | K. Kuehn | M. Lima | J. Marshall | F. Menanteau | R. Miquel | A. Plazas | A. Romer | A. Roodman | V. Scarpine | R. Schindler | M. Schubnell | M. Smith | R. Smith | E. Suchyta | G. Tarlé | A. Walker | J. Zuntz | E. Sheldon | B. Yanny | M. Soares-Santos | J. Garc'ia-Bellido | A. Benoit-Lévy | M. Johnson | M. Johnson | E. Krause | M. March | E. Sánchez | J. Blazek | J. Dietrich | S. Dodelson | T. Giannantonio | D. Goldstein | B. Jain | P. Martini | B. Nord | D. Thomas | V. Vikram | Y. Zhang | L. Secco | M. Troxel | J. Vicente | E. Huff | N. MacCrann | M. Rau | M. Jarvis | O. Friedrich | R. Cawthon | T. Li | J. Prat | A. Alarcon | T. Varga | C. S'anchez | E. Fernandez | J. Elvin-Poole | M. Gatti | R. Rollins | S. Samuroff | P. Vielzeuf | Y. Fang | N. Kokron | M. C. Kind | A. C. Rosell | A. Roodman | J. Marshall | C. Chang | T. Li | M. Johnson | R. Smith | T. Li | Y. Fang | T. Li | Y. Fang | M. Johnson | E. Fernandez | M. Swanson | R. C. Smith

[1]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[2]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[3]  N. E. Sommer,et al.  Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies , 2017, Monthly Notices of the Royal Astronomical Society.

[4]  B. Yanny,et al.  Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology , 2017, 1708.01531.

[5]  D. Gerdes,et al.  Dark Energy Survey Year 1 results: the impact of galaxy neighbours on weak lensing cosmology with IM3SHAPE , 2017, 1708.01534.

[6]  Karl Glazebrook,et al.  KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering , 2017, 1707.06627.

[7]  N. E. Sommer,et al.  Dark Energy Survey Year 1 results: Cross-correlation redshifts - methods and systematics characterization , 2017, 1709.00992.

[8]  Erin S. Sheldon,et al.  Practical Weak-lensing Shear Measurement with Metacalibration , 2017, 1702.02601.

[9]  Maria E. S. Pereira,et al.  Lensing is Low: Cosmology, Galaxy Formation, or New Physics? , 2016, 1611.08606.

[10]  A. Slosar,et al.  Galaxy–galaxy lensing estimators and their covariance properties , 2016, 1611.00752.

[11]  R. Nichol,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function , 2016, 1607.03145.

[12]  Daniel Thomas,et al.  Cosmology from large-scale galaxy clustering and galaxy-galaxy lensing with dark energy survey science verification data , 2016, 1604.07871.

[13]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[14]  D. Gerdes,et al.  Galaxy bias from galaxy-galaxy lensing in the DES science verification data , 2016, 1609.08167.

[15]  F. Abdalla,et al.  Improving lognormal models for cosmological fields , 2016, 1602.08503.

[16]  J. Loveday,et al.  The stellar-to-halo mass relation of GAMA galaxies from 100 deg2 of KiDS weak lensing data , 2016, 1601.06791.

[17]  R. Nichol,et al.  THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATA , 2016, The Astrophysical Journal Supplement Series.

[18]  R. Nichol,et al.  Galaxy bias from the Dark Energy Survey Science Verification data:combining galaxy density maps and weak lensing maps , 2016, 1601.00405.

[19]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[20]  A. Heavens,et al.  Parameter inference with estimated covariance matrices , 2015, 1511.05969.

[21]  C. B. D'Andrea,et al.  No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey , 2015, 1507.08336.

[22]  C. B. D'Andrea,et al.  Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing , 2015, Physical Review D.

[23]  C. B. D'Andrea,et al.  Cosmology from cosmic shear with Dark Energy Survey science verification data , 2015, 1507.05552.

[24]  C. B. D'Andrea,et al.  The DES Science Verification weak lensing shear catalogues , 2015, Monthly Notices of the Royal Astronomical Society.

[25]  J. E. Carlstrom,et al.  CMB lensing tomography with the DES Science Verification galaxies , 2015, Monthly Notices of the Royal Astronomical Society.

[26]  R. J. Brunner,et al.  Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data , 2015, 1507.05360.

[27]  R. Nichol,et al.  redMaGiC: selecting luminous red galaxies from the DES Science Verification data , 2015, 1507.05460.

[28]  R. Nichol,et al.  Joint analysis of galaxy-galaxy lensing and galaxy clustering: methodology and forecasts for Dark Energy Survey , 2015, 1507.05353.

[29]  R. Nichol,et al.  Galaxy–galaxy lensing in the Dark Energy Survey Science Verification data , 2015, Monthly Notices of the Royal Astronomical Society.

[30]  Edwin Valentijn,et al.  Gravitational lensing analysis of the Kilo-Degree Survey , 2015, 1507.00738.

[31]  H. Hoekstra,et al.  The masses of satellites in GAMA galaxy groups from 100 square degrees of KiDS weak lensing data , 2015, 1507.00737.

[32]  A. Hopkins,et al.  Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data , 2015, 1507.00735.

[33]  H. Hoekstra,et al.  CFHTLenS: co-evolution of galaxies and their dark matter haloes , 2013, 1310.6784.

[34]  Mustapha Ishak,et al.  The Intrinsic Alignment of Galaxies and its Impact on Weak Gravitational Lensing in an Era of Precision Cosmology , 2014, 1407.6990.

[35]  J. Brownstein,et al.  THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. II. ASTROPHYSICAL AND COSMOLOGICAL CONSTRAINTS , 2014, 1407.1856.

[36]  R. Nichol,et al.  Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.

[37]  E. Sheldon An implementation of Bayesian lensing shear measurement , 2014, 1403.7669.

[38]  H. Hoekstra,et al.  CFHTLenS: the relation between galaxy dark matter haloes and baryons from weak gravitational lensing , 2013, 1304.4265.

[39]  A. Finoguenov,et al.  redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG , 2013, 1303.3562.

[40]  S. Bridle,et al.  im3shape: a maximum likelihood galaxy shear measurement code for cosmic gravitational lensing , 2013, 1302.0183.

[41]  H. Hoekstra,et al.  CFHTLenS: the environmental dependence of galaxy halo masses from weak lensing , 2013, 1301.7421.

[42]  A. Slosar,et al.  Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7 , 2012, 1207.1120.

[43]  S. More,et al.  Cosmological Constraints from a Combination of Galaxy Clustering and Lensing -- III. Application to SDSS Data , 2012, 1207.0503.

[44]  Edwin A. Valentijn,et al.  The Kilo-Degree Survey , 2012, Experimental Astronomy.

[45]  L. Miller,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.

[46]  R. Mandelbaum,et al.  Separating intrinsic alignment and galaxy-galaxy lensing , 2012, 1204.2264.

[47]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics , 2012, 1203.6499.

[48]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[49]  W. Marsden I and J , 2012 .

[50]  P. Schneider,et al.  Cosmic shear covariance: the log-normal approximation , 2011, 1105.3980.

[51]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[52]  R. Mandelbaum,et al.  Algorithm for the direct reconstruction of the dark matter correlation function from weak lensing and galaxy clustering , 2009, 0911.4973.

[53]  Gary M. Bernstein,et al.  COMPREHENSIVE TWO-POINT ANALYSES OF WEAK GRAVITATIONAL LENSING SURVEYS , 2008, 0808.3400.

[54]  S. More,et al.  Galaxy clustering and galaxy-galaxy lensing: a promising union to constrain cosmological parameters , 2008, 0807.4932.

[55]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[56]  G. Bernstein,et al.  Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration , 2005, astro-ph/0506030.

[57]  G. Bernstein Metric Tests for Curvature from Weak Lensing and Baryon Acoustic Oscillations , 2005, astro-ph/0503276.

[58]  Michael Olberg,et al.  Introduction Submitted to : , 1994 .

[59]  J. Brinkmann,et al.  Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.

[60]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[61]  O. Lahav,et al.  Measuring our Universe from Galaxy Redshift Surveys , 2003, Living reviews in relativity.

[62]  A. Connolly,et al.  The Galaxy-Mass Correlation Function Measured from Weak Lensing in the Sloan Digital Sky Survey , 2003, astro-ph/0312036.

[63]  G. Bernstein,et al.  The skewness of the aperture mass statistic , 2003, astro-ph/0307393.

[64]  B. Jain,et al.  Cross-correlation tomography: measuring dark energy evolution with weak lensing. , 2003, Physical review letters.

[65]  R. Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[66]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[67]  Y. Suto,et al.  Probability Distribution Function of Cosmological Density Fluctuations from a Gaussian Initial Condition: Comparison of One-Point and Two-Point Lognormal Model Predictions with N-Body Simulations , 2001, astro-ph/0105218.

[68]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[69]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[70]  J. Tyson,et al.  Galaxy Dark Matter: Galaxy-Galaxy Lensing in the Hubble Deep Field , 1996, astro-ph/9608043.

[71]  R. Blandford,et al.  Weak Gravitational Lensing by Galaxies , 1996 .

[72]  B. Jones,et al.  A lognormal model for the cosmological mass distribution. , 1991 .

[73]  Galaxy mass distribution from gravitational light deflection , 1984 .