Species Delimitation Using a Combined Coalescent and Information-Theoretic Approach: An Example from North American Myotis Bats

Abstract Coalescent model–based methods for phylogeny estimation force systematists to confront issues related to the identification of species boundaries. Unlike conventional phylogenetic analysis, where species membership can be assessed qualitatively after the phylogeny is estimated, the phylogenies that are estimated under a coalescent model treat aggregates of individuals as the operational taxonomic units and thus require a priori definition of these sets because the models assume that the alleles in a given lineage are sampled from a single panmictic population. Fortunately, the use of coalescent model–based approaches allows systematists to conduct probabilistic tests of species limits by calculating the probability of competing models of lineage composition. Here, we conduct the first exploration of the issues related to applying such tests to a complex empirical system. Sequence data from multiple loci were used to assess species limits and phylogeny in a clade of North American Myotis bats. After estimating gene trees at each locus, the likelihood of models representing all hierarchical permutations of lineage composition was calculated and Akaike information criterion scores were computed. Metrics borrowed from information theory suggest that there is strong support for several models that include multiple evolutionary lineages within the currently described species Myotis lucifugus and M. evotis. Although these results are preliminary, they illustrate the practical importance of coupled species delimitation and phylogeny estimation.

[1]  Jody Hey,et al.  Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics , 2007, Proceedings of the National Academy of Sciences.

[2]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[3]  Kevin de Queiroz,et al.  Species Concepts and Species Delimitation , 2007 .

[4]  W. Maddison,et al.  Inferring phylogeny despite incomplete lineage sorting. , 2006, Systematic biology.

[5]  Liang Liu,et al.  Estimating Species Trees Using Multiple-Allele DNA Sequence Data , 2008, Evolution; international journal of organic evolution.

[6]  Cédric Feschotte,et al.  Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus , 2007, Proceedings of the National Academy of Sciences.

[7]  T. Kunz,et al.  Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. , 2007, Molecular phylogenetics and evolution.

[8]  R. Hudson,et al.  MATHEMATICAL CONSEQUENCES OF THE GENEALOGICAL SPECIES CONCEPT , 2002, Evolution; international journal of organic evolution.

[9]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[10]  Noah A Rosenberg,et al.  Discordance of species trees with their most likely gene trees: the case of five taxa. , 2008, Systematic biology.

[11]  J. Hey Isolation with migration models for more than two populations. , 2010, Molecular biology and evolution.

[12]  B. Larget,et al.  Bayesian estimation of concordance among gene trees. , 2006, Molecular biology and evolution.

[13]  B. Rannala,et al.  Phylogenetic inference using whole genomes. , 2008, Annual review of genomics and human genetics.

[14]  M. Ruedi,et al.  Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. , 2001, Molecular phylogenetics and evolution.

[15]  D. Pearl,et al.  Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. , 2007, Systematic biology.

[16]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[17]  Bin Ma,et al.  From Gene Trees to Species Trees , 2000, SIAM J. Comput..

[18]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[19]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[20]  D. Pearl,et al.  High-resolution species trees without concatenation , 2007, Proceedings of the National Academy of Sciences.

[21]  Brian D. Farrell,et al.  Comparison of methods for species-tree inference in the sawfly genus Neodiprion (Hymenoptera: Diprionidae). , 2008, Systematic biology.

[22]  Bryan C Carstens,et al.  Does gene flow destroy phylogenetic signal? The performance of three methods for estimating species phylogenies in the presence of gene flow. , 2008, Molecular phylogenetics and evolution.

[23]  L. Kubatko,et al.  Inconsistency of phylogenetic estimates from concatenated data under coalescence. , 2007, Systematic biology.

[24]  W. P. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.01 (Build j28) , 2007 .

[25]  Sergei L. Kosakovsky Pond,et al.  GARD: a genetic algorithm for recombination detection , 2006, Bioinform..

[26]  Dirk Husmeier,et al.  TOPALi: software for automatic identification of recombinant sequences within DNA multiple alignments , 2004, Bioinform..

[27]  Zaid Abdo,et al.  Performance-based selection of likelihood models for phylogeny estimation. , 2003, Systematic biology.

[28]  Bryan D. Kolaczkowski,et al.  Is there a star tree paradox? , 2006, Molecular biology and evolution.

[29]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[30]  J. W. Sites,et al.  OPERATIONAL CRITERIA FOR DELIMITING SPECIES , 2004 .

[31]  Sergei L. Kosakovsky Pond,et al.  HyPhy: hypothesis testing using phylogenies , 2005, Bioinform..

[32]  J. Wiens Species delimitation: new approaches for discovering diversity. , 2007, Systematic biology.

[33]  R. Page,et al.  The expanding contributions of systematic biology. , 2008, Systematic biology.

[34]  D. Nickerson,et al.  The utility of single nucleotide polymorphisms in inferences of population history , 2003 .

[35]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[36]  Bryan C. Carstens,et al.  Coupling Genetic and Ecological-Niche Models to Examine How Past Population Distributions Contribute to Divergence , 2007, Current Biology.

[37]  S. Creer Choosing and Using Introns in Molecular Phylogenetics , 2007, Evolutionary bioinformatics online.

[38]  Jeffrey C. Oliver AUGIST: inferring species trees while accommodating gene tree uncertainty , 2008, Bioinform..

[39]  B. Riddle,et al.  Cryptic vicariance in the historical assembly of a Baja California peninsular desert biota. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[41]  H. Waller Inherited methemoglobinemia (enzyme deficiencies) , 2004, Humangenetik.

[42]  S. Palumbi,et al.  Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. , 1994, Molecular biology and evolution.

[43]  J. Wakeley,et al.  THE EFFECTS OF SUBDIVISION ON THE GENETIC DIVERGENCE OF POPULATIONS AND SPECIES , 2000, Evolution; international journal of organic evolution.

[44]  N. Rosenberg,et al.  Discordance of Species Trees with Their Most Likely Gene Trees , 2006, PLoS genetics.

[45]  S. Jeffery Evolution of Protein Molecules , 1979 .

[46]  M. Nei,et al.  Gene genealogy and variance of interpopulational nucleotide differences. , 1985, Genetics.

[47]  Julio Rozas,et al.  DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis , 1999, Bioinform..

[48]  D. Ray,et al.  Bats with hATs: evidence for recent DNA transposon activity in genus Myotis. , 2006, Molecular biology and evolution.

[49]  Richard R. Hudson,et al.  Generating samples under a Wright-Fisher neutral model of genetic variation , 2002, Bioinform..

[50]  P. Donnelly,et al.  A new statistical method for haplotype reconstruction from population data. , 2001, American journal of human genetics.

[51]  Bryan C Carstens,et al.  Estimating species phylogeny from gene-tree probabilities despite incomplete lineage sorting: an example from Melanoplus grasshoppers. , 2007, Systematic biology.

[52]  D. J. Funk,et al.  Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA , 2003 .

[53]  John E McCormack,et al.  Maximum likelihood estimates of species trees: how accuracy of phylogenetic inference depends upon the divergence history and sampling design. , 2009, Systematic biology.

[54]  R. Hudson,et al.  A test of neutral molecular evolution based on nucleotide data. , 1987, Genetics.

[55]  Price Expedition to Arizona,et al.  The identity of bats (genus Myotis) collected in Arizona by Miller, Price, and Condit in 1894. American Museum novitates ; no. 2140 , 1963 .

[56]  B. Carstens,et al.  An information‐theoretical approach to phylogeography , 2009, Molecular ecology.

[57]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[58]  S. Lazic,et al.  Model based Inference in the Life Sciences: a Primer on Evidence , 2011 .

[59]  S. Edwards,et al.  Comparison of species tree methods for reconstructing the phylogeny of bearded manakins (Aves: Pipridae, Manacus) from multilocus sequence data. , 2008, Systematic biology.

[60]  L. Kubatko Identifying hybridization events in the presence of coalescence via model selection. , 2009, Systematic biology.

[61]  M. Hedin,et al.  Multilocus genealogies reveal multiple cryptic species and biogeographical complexity in the California turret spider Antrodiaetus riversi (Mygalomorphae, Antrodiaetidae) , 2006, Molecular ecology.

[62]  C. Moritz,et al.  Multilocus phylogenetics of a rapid radiation in the genus Thomomys (Rodentia: Geomyidae). , 2008, Systematic biology.

[63]  R. Hudson Gene genealogies and the coalescent process. , 1990 .

[64]  F. Tajima Evolutionary relationship of DNA sequences in finite populations. , 1983, Genetics.

[65]  L. Knowles,et al.  What is the danger of the anomaly zone for empirical phylogenetics? , 2009, Systematic biology.

[66]  R. Harrison 2 Linking Evolutionary Pattern and Process The Relevance of Species Concepts for the Study of Speciation , 2022 .

[67]  W. Heyer,et al.  Phylogenetic analyses of mtDNA sequences reveal three cryptic lineages in the widespread neotropical frog Leptodactylus fuscus (Schneider, 1799) (Anura, Leptodactylidae) , 2006 .

[68]  K. Kozak,et al.  Gene lineages and eastern North American palaeodrainage basins: phylogeography and speciation in salamanders of the Eurycea bislineata species complex , 2005, Molecular ecology.

[69]  S. Edwards IS A NEW AND GENERAL THEORY OF MOLECULAR SYSTEMATICS EMERGING? , 2009, Evolution; international journal of organic evolution.

[70]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[71]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[72]  Laura Salter Kubatko,et al.  STEM: species tree estimation using maximum likelihood for gene trees under coalescence , 2009, Bioinform..

[73]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[74]  A. Yoder,et al.  Illumination of cryptic species boundaries in long-tailed shrew tenrecs (Mammalia: Tenrecidae; Microgale), with new insights into geographic variation and distributional constraints , 2004 .

[75]  A. J. Shaw Molecular phylogeography and cryptic speciation in the mosses, Mielichhoferia elongata and M. mielichhoferiana (Bryaceae) , 2000, Molecular ecology.

[76]  L. Partridge,et al.  Oxford Surveys in Evolutionary Biology , 1991 .

[77]  A. Templeton Using phylogeographic analyses of gene trees to test species status and processes , 2001, Molecular ecology.

[78]  K. de Queiroz,et al.  Species concepts and species delimitation. , 2007, Systematic biology.

[79]  David R. Anderson,et al.  Model Selection and Inference: A Practical Information-Theoretic Approach , 2001 .

[80]  Eric Vigoda,et al.  Phylogenetic MCMC Algorithms Are Misleading on Mixtures of Trees , 2005, Science.

[81]  M. Rodrigues,et al.  Phylogeography and species limits in the Gymnodactylus darwinii complex (Gekkonidae, Squamata): genetic structure coincides with river systems in the Brazilian Atlantic Forest , 2005 .

[82]  Peter Beerli,et al.  Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[83]  Bryan C. Carstens,et al.  Delimiting species without monophyletic gene trees. , 2007, Systematic biology.

[84]  J. Bond,et al.  Testing species boundaries in the Antrodiaetus unicolor complex (Araneae: Mygalomorphae: Antrodiaetidae): "paraphyly" and cryptic diversity. , 2005, Molecular phylogenetics and evolution.