All non-trivial variants of 3-LDT are equivalent

The popular 3-SUM conjecture states that there is no strongly subquadratic time algorithm for checking if a given set of integers contains three distinct elements that sum up to zero. A closely related problem is to check if a given set of integers contains distinct x1, x2, x3 such that x1+x2=2x3. This can be reduced to 3-SUM in almost-linear time, but surprisingly a reverse reduction establishing 3-SUM hardness was not known. We provide such a reduction, thus resolving an open question of Erickson. In fact, we consider a more general problem called 3-LDT parameterized by integer parameters α1, α2, α3 and t. In this problem, we need to check if a given set of integers contains distinct elements x1, x2, x3 such that α1 x1+α2 x2 +α3 x3 = t. For some combinations of the parameters, every instance of this problem is a NO-instance or there exists a simple almost-linear time algorithm. We call such variants trivial. We prove that all non-trivial variants of 3-LDT are equivalent under subquadratic reductions. Our main technical contribution is an efficient deterministic procedure based on the famous Behrend’s construction that partitions a given set of integers into few subsets that avoid a chosen linear equation.

[1]  Erik D. Demaine,et al.  Subquadratic Algorithms for 3SUM , 2005, Algorithmica.

[2]  Noga Alon,et al.  Efficient Testing of Large Graphs , 2000, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[3]  Jeanette P. Schmidt,et al.  The Spatial Complexity of Oblivious k-Probe Hash Functions , 2018, SIAM J. Comput..

[4]  Bernard Chazelle,et al.  Lower bounds for linear degeneracy testing , 2005, J. ACM.

[5]  Mark de Berg,et al.  Perfect Binary Space Partitions , 1993, Comput. Geom..

[6]  Moshe Lewenstein,et al.  How Hard is it to Find (Honest) Witnesses? , 2017, ESA.

[7]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[8]  Otfried Cheong,et al.  Finding a Guard that Sees Most and a Shop that Sells Most , 2004, SODA '04.

[9]  Dvir Shabtay,et al.  Scheduling Lower Bounds via AND Subset Sum , 2020, ICALP.

[10]  Mihai Patrascu,et al.  Towards polynomial lower bounds for dynamic problems , 2010, STOC '10.

[11]  Tsvi Kopelowitz,et al.  The Strong 3SUM-INDEXING Conjecture is False , 2019, ArXiv.

[12]  Richard J. Lipton,et al.  Multi-party protocols , 1983, STOC.

[13]  Peter J. Cameron,et al.  Some sequences of integers , 1989, Discret. Math..

[14]  Moshe Lewenstein,et al.  On Hardness of Jumbled Indexing , 2014, ICALP.

[15]  Mark H. Overmars,et al.  Preprocessing chains for fast dihedral rotations is hard or even impossible , 2002, Comput. Geom..

[16]  Rolf Klein,et al.  Smallest Color-Spanning Objects , 2001, ESA.

[17]  Emanuele Viola,et al.  3SUM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {3SUM}$$\end{document}, 3XOR\documentclass[12pt]{minimal} , 2014, Algorithmica.

[18]  Virginia Vassilevska Williams,et al.  Hardness of Easy Problems: Basing Hardness on Popular Conjectures such as the Strong Exponential Time Hypothesis (Invited Talk) , 2015, IPEC.

[19]  Mark H. Overmars,et al.  On a Class of O(n2) Problems in Computational Geometry , 1995, Comput. Geom..

[20]  Mam Riess Jones Color Coding , 1962, Human factors.

[21]  David M. Mount,et al.  On the least median square problem , 2004, SCG '04.

[22]  Steven Skiena,et al.  On Minimum-Area Hulls , 1998, Algorithmica.

[23]  Michael Elkin An improved construction of progression-free sets , 2010, SODA '10.

[24]  Tsvi Kopelowitz,et al.  Higher Lower Bounds from the 3SUM Conjecture , 2014, SODA.

[25]  Jean Cardinal,et al.  Subquadratic Algorithms for Algebraic 3SUM , 2018, Discret. Comput. Geom..

[26]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[27]  David G. Kirkpatrick,et al.  Computing the Set of all the Distant Horizons of a Terrain , 2005, Int. J. Comput. Geom. Appl..

[28]  Petr A. Golovach,et al.  Almost Optimal Lower Bounds for Problems Parameterized by Clique-Width , 2014, SIAM J. Comput..

[29]  Dvir Shabtay,et al.  SETH-based Lower Bounds for Subset Sum and Bicriteria Path , 2017, SODA.

[30]  Klaus Jansen,et al.  Bin packing with fixed number of bins revisited , 2013, J. Comput. Syst. Sci..

[31]  Ryan Williams,et al.  Finding, minimizing, and counting weighted subgraphs , 2009, STOC '09.

[32]  Amir Abboud,et al.  Exact Weight Subgraphs and the k-Sum Conjecture , 2013, ICALP.

[33]  Ryan Williams,et al.  Losing Weight by Gaining Edges , 2013, ESA.

[34]  J. Erickson Finding Longest Arithmetic Progressions , 1999 .

[35]  Oren Weimann,et al.  Consequences of Faster Alignment of Sequences , 2014, ICALP.

[36]  Prosenjit Bose,et al.  Filling Polyhedral Molds , 1993, WADS.

[37]  Timothy M. Chan More Logarithmic-Factor Speedups for 3SUM, (median, +)-Convolution, and Some Geometric 3SUM-Hard Problems , 2018, SODA.

[38]  Jeff Erickson New Lower Bounds for Convex Hull Problems in Odd Dimensions , 1999, SIAM J. Comput..

[39]  Amir Abboud,et al.  The 4/3 additive spanner exponent is tight , 2015, J. ACM.

[40]  Shachar Lovett,et al.  Near-optimal linear decision trees for k-SUM and related problems , 2017, Electron. Colloquium Comput. Complex..

[41]  Sariel Har-Peled,et al.  Polygon-containment and translational min-Hausdorff-distance between segment sets are 3SUM-hard , 2001, SODA '99.

[42]  Ari Freund,et al.  Improved Subquadratic 3SUM , 2017, Algorithmica.

[43]  Jeff Erickson,et al.  Lower bounds for linear satisfiability problems , 1995, SODA '95.

[44]  Imre Z. Ruzsa,et al.  Solving a linear equation in a set of integers I , 1993 .

[45]  Emanuele Viola,et al.  3SUM, 3XOR, Triangles , 2013, Electron. Colloquium Comput. Complex..

[46]  Micha Sharir,et al.  Improved Bounds for 3SUM, K-SUM, and Linear Degeneracy , 2015, ESA.

[47]  Amir Abboud,et al.  Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[48]  Moshe Lewenstein,et al.  Clustered Integer 3SUM via Additive Combinatorics , 2015, STOC.

[49]  Allan Grønlund Jørgensen,et al.  Threesomes, Degenerates, and Love Triangles , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[50]  F. Behrend On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Boris Aronov,et al.  On approximating the depth and related problems , 2005, SODA '05.

[52]  Avi Wigderson,et al.  Simple analysis of graph tests for linearity and PCP , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.