All non-trivial variants of 3-LDT are equivalent
暂无分享,去创建一个
Tatiana Starikovskaya | Bartlomiej Dudek | Pawel Gawrychowski | Tatiana Starikovskaya | Paweł Gawrychowski | Bartłomiej Dudek
[1] Erik D. Demaine,et al. Subquadratic Algorithms for 3SUM , 2005, Algorithmica.
[2] Noga Alon,et al. Efficient Testing of Large Graphs , 2000, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[3] Jeanette P. Schmidt,et al. The Spatial Complexity of Oblivious k-Probe Hash Functions , 2018, SIAM J. Comput..
[4] Bernard Chazelle,et al. Lower bounds for linear degeneracy testing , 2005, J. ACM.
[5] Mark de Berg,et al. Perfect Binary Space Partitions , 1993, Comput. Geom..
[6] Moshe Lewenstein,et al. How Hard is it to Find (Honest) Witnesses? , 2017, ESA.
[7] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[8] Otfried Cheong,et al. Finding a Guard that Sees Most and a Shop that Sells Most , 2004, SODA '04.
[9] Dvir Shabtay,et al. Scheduling Lower Bounds via AND Subset Sum , 2020, ICALP.
[10] Mihai Patrascu,et al. Towards polynomial lower bounds for dynamic problems , 2010, STOC '10.
[11] Tsvi Kopelowitz,et al. The Strong 3SUM-INDEXING Conjecture is False , 2019, ArXiv.
[12] Richard J. Lipton,et al. Multi-party protocols , 1983, STOC.
[13] Peter J. Cameron,et al. Some sequences of integers , 1989, Discret. Math..
[14] Moshe Lewenstein,et al. On Hardness of Jumbled Indexing , 2014, ICALP.
[15] Mark H. Overmars,et al. Preprocessing chains for fast dihedral rotations is hard or even impossible , 2002, Comput. Geom..
[16] Rolf Klein,et al. Smallest Color-Spanning Objects , 2001, ESA.
[17] Emanuele Viola,et al. 3SUM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {3SUM}$$\end{document}, 3XOR\documentclass[12pt]{minimal} , 2014, Algorithmica.
[18] Virginia Vassilevska Williams,et al. Hardness of Easy Problems: Basing Hardness on Popular Conjectures such as the Strong Exponential Time Hypothesis (Invited Talk) , 2015, IPEC.
[19] Mark H. Overmars,et al. On a Class of O(n2) Problems in Computational Geometry , 1995, Comput. Geom..
[20] Mam Riess Jones. Color Coding , 1962, Human factors.
[21] David M. Mount,et al. On the least median square problem , 2004, SCG '04.
[22] Steven Skiena,et al. On Minimum-Area Hulls , 1998, Algorithmica.
[23] Michael Elkin. An improved construction of progression-free sets , 2010, SODA '10.
[24] Tsvi Kopelowitz,et al. Higher Lower Bounds from the 3SUM Conjecture , 2014, SODA.
[25] Jean Cardinal,et al. Subquadratic Algorithms for Algebraic 3SUM , 2018, Discret. Comput. Geom..
[26] Dieter van Melkebeek,et al. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.
[27] David G. Kirkpatrick,et al. Computing the Set of all the Distant Horizons of a Terrain , 2005, Int. J. Comput. Geom. Appl..
[28] Petr A. Golovach,et al. Almost Optimal Lower Bounds for Problems Parameterized by Clique-Width , 2014, SIAM J. Comput..
[29] Dvir Shabtay,et al. SETH-based Lower Bounds for Subset Sum and Bicriteria Path , 2017, SODA.
[30] Klaus Jansen,et al. Bin packing with fixed number of bins revisited , 2013, J. Comput. Syst. Sci..
[31] Ryan Williams,et al. Finding, minimizing, and counting weighted subgraphs , 2009, STOC '09.
[32] Amir Abboud,et al. Exact Weight Subgraphs and the k-Sum Conjecture , 2013, ICALP.
[33] Ryan Williams,et al. Losing Weight by Gaining Edges , 2013, ESA.
[34] J. Erickson. Finding Longest Arithmetic Progressions , 1999 .
[35] Oren Weimann,et al. Consequences of Faster Alignment of Sequences , 2014, ICALP.
[36] Prosenjit Bose,et al. Filling Polyhedral Molds , 1993, WADS.
[37] Timothy M. Chan. More Logarithmic-Factor Speedups for 3SUM, (median, +)-Convolution, and Some Geometric 3SUM-Hard Problems , 2018, SODA.
[38] Jeff Erickson. New Lower Bounds for Convex Hull Problems in Odd Dimensions , 1999, SIAM J. Comput..
[39] Amir Abboud,et al. The 4/3 additive spanner exponent is tight , 2015, J. ACM.
[40] Shachar Lovett,et al. Near-optimal linear decision trees for k-SUM and related problems , 2017, Electron. Colloquium Comput. Complex..
[41] Sariel Har-Peled,et al. Polygon-containment and translational min-Hausdorff-distance between segment sets are 3SUM-hard , 2001, SODA '99.
[42] Ari Freund,et al. Improved Subquadratic 3SUM , 2017, Algorithmica.
[43] Jeff Erickson,et al. Lower bounds for linear satisfiability problems , 1995, SODA '95.
[44] Imre Z. Ruzsa,et al. Solving a linear equation in a set of integers I , 1993 .
[45] Emanuele Viola,et al. 3SUM, 3XOR, Triangles , 2013, Electron. Colloquium Comput. Complex..
[46] Micha Sharir,et al. Improved Bounds for 3SUM, K-SUM, and Linear Degeneracy , 2015, ESA.
[47] Amir Abboud,et al. Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
[48] Moshe Lewenstein,et al. Clustered Integer 3SUM via Additive Combinatorics , 2015, STOC.
[49] Allan Grønlund Jørgensen,et al. Threesomes, Degenerates, and Love Triangles , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
[50] F. Behrend. On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.
[51] Boris Aronov,et al. On approximating the depth and related problems , 2005, SODA '05.
[52] Avi Wigderson,et al. Simple analysis of graph tests for linearity and PCP , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.