Carbon Nanotube Field-effect Transistors-The Importance of Being Small

[1]  Jing Guo,et al.  Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors , 2002, Digest. International Electron Devices Meeting,.

[2]  J. Knoch,et al.  High performance of potassium n-doped carbon nanotube field-effect transistors , 2004, cond-mat/0402350.

[3]  S. Luryi Quantum capacitance devices , 1988 .

[4]  Williamson,et al.  Quantum ballistic and adiabatic electron transport studied with quantum point contacts. , 1991, Physical review. B, Condensed matter.

[5]  J. Nagao,et al.  Tunneling through a narrow-gap semiconductor with different conduction- and valence-band effective masses , 1996 .

[6]  Daniel S. Fisher,et al.  Relation between conductivity and transmission matrix , 1981 .

[7]  Short-channel like effects in Schottky barrier carbon nanotube field-effect transistors , 2002, Digest. International Electron Devices Meeting,.

[8]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[9]  A. Messiah Quantum Mechanics , 1961 .

[10]  K. K. Young Short-channel effect in fully depleted SOI MOSFETs , 1989 .

[11]  S. Datta,et al.  A simple quantum mechanical treatment of scattering in nanoscale transistors , 2003 .

[12]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[13]  M. Radosavljevic,et al.  Multimode transport in Schottky-barrier carbon-nanotube field-effect transistors. , 2004, Physical review letters.

[14]  Hongjie Dai,et al.  Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters , 2000 .

[15]  S. Tans,et al.  Molecular transistors: Potential modulations along carbon nanotubes , 2000, Nature.

[16]  J. Plummer,et al.  Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET's , 1997, IEEE Electron Device Letters.

[17]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[18]  M. Lundstrom Fundamentals of carrier transport , 1990 .

[19]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[20]  S. Wind,et al.  Field-modulated carrier transport in carbon nanotube transistors. , 2002, Physical review letters.

[21]  S. Datta Nanoscale device modeling: the Green’s function method , 2000 .

[22]  David L. Pulfrey,et al.  Quantum capacitance in nanoscale device modeling , 2004 .

[23]  H. Flietner,et al.  The E(k) Relation for a Two‐Band Scheme of Semiconductors and the Application to the Metal‐Semiconductor Contact , 1972 .

[24]  K. Likharev,et al.  Nanoscale field-effect transistors: An ultimate size analysis , 1997, cond-mat/9706026.

[25]  Gerhard Klimeck,et al.  Single and multiband modeling of quantum electron transport through layered semiconductor devices , 1997 .

[26]  M. Radosavljevic,et al.  Tunneling versus thermionic emission in one-dimensional semiconductors. , 2004, Physical review letters.

[27]  J. Knoch,et al.  Impact of the channel thickness on the performance of Schottky barrier metal–oxide–semiconductor field-effect transistors , 2002 .

[28]  Quantum simulations of an ultrashort channel single-gated n-MOSFET on SOI , 2002 .

[29]  An extended model for carbon nanotube field-effect transistors , 2004, Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC..

[30]  K. F. Lee,et al.  Scaling the Si MOSFET: from bulk to SOI to bulk , 1992 .

[31]  Stefan Heinze,et al.  Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors , 2003 .

[32]  Y.-M. Lin,et al.  Novel structures enabling bulk switching in carbon nanotube FETs , 2004, Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC..

[33]  Mark S. Lundstrom,et al.  Theory of ballistic nanotransistors , 2003 .