Optimized Encodings of Fragments of Type Theory in First-Order Logic

The paper presents sound and complete translations of several fragments of Martin-Lof's monomorphic type theory to first order predicate calculus. The translations are optimised for the purpose of automated theorem proving in the mentioned fragments. The implementation of the theorem prover Gandalf and several experimental results are described.

[1]  Tanel Tammet,et al.  A Resolution Theorem Prover for Intuitonistic Logic , 1996, CADE.

[2]  Christian G. Fermüller,et al.  Resolution Methods for the Decision Problem , 1993, Lecture Notes in Computer Science.

[3]  Amy P. Felty,et al.  Encoding a Dependent-Type Lambda-Calculus in a Logic Programming Language , 1990, CADE.

[4]  Bengt Nordström,et al.  Programming in Martin-Lo¨f's type theory: an introduction , 1990 .

[5]  Grigori Mints,et al.  Gentzen-type systems and resolution rules. Part I. Propositional logic , 1990, Conference on Computer Logic.

[6]  Seif Haridi,et al.  An Intuitionistic Predicate Logic Theorem Prover , 1989, J. Log. Comput..

[7]  Dale A. Miller,et al.  A compact representation of proofs , 1987, Stud Logica.

[8]  Jan M. Smith,et al.  An interpretation of Martin-Löf's type theory in a type-free theory of propositions , 1984, Journal of Symbolic Logic.

[9]  G. Peterson A Technique for Establishing Completeness Results in Theorem Proving with Equality , 1983, SIAM J. Comput..

[10]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[11]  C. Cordell Green,et al.  Application of Theorem Proving to Problem Solving , 1969, IJCAI.

[12]  Grigori Mints,et al.  Resolution Strategies for the Intuitionistic Logic , 1993, NATO ASI CP.

[13]  Thierry Coquand,et al.  Pattern Matching with Dependent Types , 1992 .

[14]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[15]  Dale A. Miller,et al.  Proofs in Higher-Order Logic , 1983 .

[16]  Warren D. Goldfarb,et al.  The Undecidability of the Second-Order Unification Problem , 1981, Theor. Comput. Sci..

[17]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.