Buoyancy-induced, columnar vortices

A buoyancy-induced, columnar vortex is deliberately triggered in the unstably stratified air layer over a heated ground plane and is anchored within, and scales with, an azimuthal array of vertical, stator-like planar flow vanes that form an open-top enclosure and impart tangential momentum to the radially entrained air flow. The columnar vortex comprises three coupled primary flow domains: a spiraling surface momentum boundary layer of ground-heated air, an inner thermally driven vertical vortex core and an outer annular flow that is bounded by a helical shear layer and the vanes along its inner and outer edges, respectively, and by the spiraling boundary layer from below. In common with free buoyant columnar (dust devil) vortices that occur spontaneously over solar-heated terrain in the natural environment, the stationary anchored vortex is self-sustained by the conversion of the potential energy of the entrained surface-heated air layer to the kinetic energy of the induced vortical flow that persists as long as the thermal stratification is maintained. This conversion occurs as radial vorticity produced within the surface boundary layer is tilted vertically near the vortex centreline by the buoyant air to form the core of the columnar vortex. The structure and dynamics of the buoyant vortex are investigated using high-resolution stereo particle image velocimetry with specific emphasis on the evolution of the vorticity distributions and their effects on the characteristic scales of the ensuing vortex and on the kinetic energy of the induced flow.

[1]  H. Ohno,et al.  Mechanisms for intensification and maintenance of numerically simulated dust devils , 2010 .

[2]  B. Fiedler Wind‐speed limits in numerically simulated tornadoes with suction vortices , 1998 .

[3]  Jack Casazza,et al.  Electric Power–Generation , 2004 .

[4]  Raymond H. Brady,et al.  A case study of nonmesocyclone Tornado development in northeast Colorado: similarities to waterspout formation , 1989 .

[5]  Ari Glezer,et al.  Power Generation From Concentrated Solar-Heated Air Using Buoyancy-Induced Vortices , 2012 .

[6]  Ronald Greeley,et al.  Martian dust devils: Laboratory simulations of particle threshold , 2003 .

[7]  A. Honohan The interaction of synthetic jets with cross flow and the modification of aerodynamic surfaces , 2003 .

[8]  L. Leslie,et al.  Thermally driven vortices: A numerical study with application to dust-devil dynamics , 1976 .

[9]  G. Haller An objective definition of a vortex , 2004, Journal of Fluid Mechanics.

[10]  G. Hunt,et al.  Two-dimensional planar plumes and fountains , 2014, Journal of Fluid Mechanics.

[11]  Joseph Katz,et al.  Instantaneous pressure and material acceleration measurements using a four-exposure PIV system , 2006 .

[12]  P. Sinclair,et al.  General Characteristics of Dust Devils. , 1969 .

[13]  Di Li,et al.  CORRIGENDUM: The work mechanism and sub-bandgap-voltage electroluminescence in inverted quantum dot light-emitting diodes , 2015, Scientific Reports.

[14]  K. M. Kanak Numerical simulation of dust devil‐scale vortices , 2005 .

[15]  G. Hess,et al.  Characteristics of Dust Devils in Australia , 1990 .

[16]  A. Glezer,et al.  Electric Power Generation Using Buoyancy-Induced Vortices , 2012 .

[17]  Gary R. Hunt,et al.  Virtual origin correction for lazy turbulent plumes , 2001, Journal of Fluid Mechanics.

[18]  A. Barcilon A Theoretical and Experimental Model for a Dust Devil. , 1967 .

[19]  Shao-Lin Lee Axisymmetrical Turbulent Swirling Natural-Convection Plume: Part 1—Theoretical Investigation , 1966 .

[20]  A laboratory model of dust devil vortices , 1977 .

[21]  Numerical Simulation of a Laminar Vortex Flow , 1982 .

[22]  Y. Zhao,et al.  Mechanism and large eddy simulation of dust devils , 2004 .

[23]  A. Glezer,et al.  Electric Power Generation Using Buoyancy-Induced Vortices Sustained by Entrained Solar-Heated Air , 2013 .

[24]  G. Batchelor,et al.  Heat convection and buoyancy effects in fluids , 1954 .

[25]  R. Rotunno Vorticity dynamics of a convective swirling boundary layer , 1980, Journal of Fluid Mechanics.

[26]  D. E. Fitzjarrald A Laboratory Simulation of Convective Vortices. , 1973 .

[27]  Nilton O. Renno,et al.  A Simple Theory for Waterspouts , 2001 .

[28]  R. Greeley,et al.  Dust devils in the laboratory: Effect of surface roughness on vortex dynamics , 2010 .

[29]  J. Ryan Relation of dust devil frequency and diameter to atmospheric temperature , 1972 .

[30]  N. A. Chigier,et al.  Experimental Investigation of Swirling Vortex Motion in Jets , 1967 .

[31]  M. Kurgansky Size distribution of dust devils in the atmosphere , 2006 .

[32]  A. Varaksin,et al.  Tornado-like non-stationary vortices: experimental modelling under laboratory conditions , 2011 .

[33]  An approach to the dust devil vortex , 1971 .

[34]  Gabriele Eisenhauer,et al.  Buoyancy Effects In Fluids , 2016 .

[35]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[36]  Glenn Leslie Baker BOUNDARY LAYERS IN LAMINAR VORTEX FLOWS , 1981 .

[37]  Matthew P. Larkin,et al.  A Simple Thermodynamical Theory for Dust Devils , 1998 .

[38]  John T. Snow,et al.  A review of recent advances in tornado vortex dynamics , 1982 .

[39]  Shao-Lin Lee Axisymmetrical Turbulent Swirling Jet , 1965 .

[40]  J. Garatuza,et al.  MATADOR 2002: A pilot field experiment on convective plumes and dust devils , 2004 .

[41]  Geoffrey Ingram Taylor,et al.  Turbulent gravitational convection from maintained and instantaneous sources , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  D. Fitzjarrald A Field Investigation of Dust Devils , 1973 .

[43]  T. Maxworthy The Laboratory Modelling of Atmospheric Vortices: A Critical Review , 1982 .

[44]  T. Maxworthy A Vorticity Source for Large-Scale Dust Devils and Other Comments on Naturally Occurring Columnar Vortices , 1973 .

[45]  Richard Rotunno,et al.  The Fluid Dynamics of Tornadoes , 2013 .

[46]  J. E. Cermak,et al.  Problems of atmospheric shear flows and their laboratory simulation , 1970 .

[47]  J. Turner,et al.  Buoyant Plumes and Thermals , 1969 .

[48]  A. Barcilon Vortex decay above a stationary boundary , 1967, Journal of Fluid Mechanics.

[49]  Shao-lin Lee Axisymmetrical Turbulent Swirling Natural-Convection Plume: Part 2—Experimental Investigation , 1966 .

[50]  J. Businger,et al.  Case Studies of a Convective Plume and a Dust Devil , 1970 .

[51]  L. M Michaud,et al.  Vortex process for capturing mechanical energy during upward heat-convection in the atmosphere , 1999 .

[52]  Jürgen Kompenhans,et al.  Post-processing of PIV data , 2007 .

[53]  John T. Snow,et al.  The formation of vertical Vortices in the convective boundary layer , 2000 .

[54]  J. Ryan,et al.  Atmospheric vorticity and dust devil rotation , 1970 .

[55]  Zhaolin Gu,et al.  From Dust Devil to Sustainable Swirling Wind Energy , 2015, Scientific reports.

[56]  R. Romero,et al.  Tornadoes and waterspouts in the Balearic Islands: phenomena and environment characterization , 2001 .

[57]  S. Metzger,et al.  Micrometeorological Conditions for Dust-Devil Occurrence in the Atacama Desert , 2011 .

[58]  J. Turner,et al.  The ‘starting plume’ in neutral surroundings , 1962, Journal of Fluid Mechanics.

[59]  P. Sinclair,et al.  The Lower Structure of Dust Devils , 1973 .

[60]  A. Pathare,et al.  Assessing the power law hypothesis for the size-frequency distribution of terrestrial and martian dust devils , 2010 .