Towards automated diagnostic evaluation of retina images

In this paper we describe the automatic segmentation of the optic nerve head (ONH) with the long-term goal of automatically diagnosing early stages of glaucoma. The images are average images obtained from a scanning laser ophthalmoscope (SLO). The segmentation consists of the main s teps of finding a region of interest containing the ONH, constraining the search space for final segmentation, and computing the fine segmentation by an active contour model. The agreement of “true positive pixels,” i.e., pixels attributed to the ONH by both manual and automatic segmentation, is very good. The classification results from three different classifiers using manual or automatic segmentation still show an advantage of manual segmentation. One means to further improve the automatic segmentation is to use information from an SLO as well as from a fundus camera.

[1]  A. Jünemann,et al.  The diagnostic value of optic nerve imaging in early glaucoma , 2001, Current opinion in ophthalmology.

[2]  G Michelson,et al.  Screening models for glaucoma , 2001, Current opinion in ophthalmology.

[3]  Torsten Hothorn,et al.  New glaucoma classification method based on standard Heidelberg Retina Tomograph parameters by bagging classification trees. , 2003, Journal of glaucoma.

[4]  Torsten Hothorn,et al.  Bagging Tree Classifiers for Laser Scanning Images: Data and Simulation Based Strategy , 2002, Artif. Intell. Medicine.

[5]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[6]  R. Klein,et al.  Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study. , 1999, Ophthalmology.

[7]  Heinrich Niemann,et al.  Automated Segmentation of the Optic Nerve Head for Glaucoma Diagnosis , 2003, Bildverarbeitung für die Medizin.

[8]  Heinrich Niemann,et al.  Experimente mit mehrschichtigen Perzeptron-Netzen zur Vorverarbeitung und Merkmalgewinnung auf den SLDF-Perfusionsbildern der Netzhaut , 1999, Bildverarbeitung für die Medizin.

[9]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Heinrich Niemann,et al.  Automated Calculation of Retinal Arteriovenous Ratio for Detection and Monitoring of Cerebrovascular Disease Based on Assessment of Morphological Changes of Retinal Vascular System , 2002, MVA.

[11]  H. Quigley Number of people with glaucoma worldwide. , 1996, The British journal of ophthalmology.

[12]  J. Jan,et al.  Registration of bimodal retinal images - improving modifications , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[13]  N. Swindale,et al.  Ability of the Heidelberg Retina Tomograph to Detect Early Glaucomatous Visual Field Loss , 1995, Journal of glaucoma.

[14]  Luca Rossetti,et al.  Intraobserver and interobserver reproducibility in the evaluation of optic disc stereometric parameters by Heidelberg Retina Tomograph. , 2002, Ophthalmology.

[15]  A. Coleman,et al.  Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. , 2002, Investigative ophthalmology & visual science.

[16]  G Zinser,et al.  Reproducibility of topographic measurements of the optic nerve head with laser tomographic scanning. , 1989, Ophthalmology.